三种被动式采集方法对甲虫收集效果的比较研究: 以香港城门样地为例
A comparative study on the collection effectiveness of beetles by three passive acquisition methods in Shing Mun (Hong Kong)
通讯作者: * E-mail:baim@ioz.ac.cn
编委: 陈圣宾
责任编辑: 闫文杰
收稿日期: 2021-02-6 接受日期: 2021-07-29
基金资助: |
|
Corresponding authors: * E-mail:baim@ioz.ac.cn
Received: 2021-02-6 Accepted: 2021-07-29
标本标准化采集是昆虫多样性研究的根本。昆虫种类繁多、习性复杂、分布广泛, 基于不同的研究目标, 昆虫学家会选用不同的采集方法。由于主动式采集方法存在较多干扰因素和重现性差等问题, 以飞行阻隔器(flight interception trap, FIT)、马氏网(Malaise trap, MT)和罐诱(pitfall trap, PT)为代表的被动式采集方法被广泛应用, 并在昆虫多样性研究中展现独特的优势。然而关于这些被动式采集方法的收集特点和采集效果等还缺乏系统性研究。本研究选取香港城门13个样点, 利用上述3种被动式采集方法共156个采集装备开展为期24天的鞘翅目昆虫采集工作, 并通过多样性指数分析、多度分析、体型与食性相关分析、相似性分析以及物种累积曲线分析评估了不同采集方法对甲虫的收集效果。本研究共采集甲虫6,380头, 涉及40科197种, 分析结果显示: (1)采用不同采集方法获得的物种数量和组成存在差异。从科级和种级的数量来看, FIT (36科, 149种) > MT (24科, 79种) > PT (17科, 60种); 在物种组成方面, FIT与PT之间、MT与PT之间区别较大, FIT与MT对应的物种相似度稍高于前两组。(2)多样性指数和物种多度分布分析显示: 丰富度指数为FIT > MT > PT, 优势度指数为FIT > PT > MT, 多样性指数为MT > FIT > PT, 均匀度指数为MT > PT > FIT。3种方法采集到的甲虫个体数为1头的种较多, 个体数超过1头的种在时间和空间方面的分布较广, 优势科的种类较少, 但其个体数占总个体数的比例较高。(3) FIT和PT均采集到了6类食性的甲虫, 其中藻食性的缨甲科甲虫仅见于FIT和PT采集方法。(4)物种累积曲线的结果表明3种采集方法效果均较好。3种采集方法各有特点, 但FIT采集的综合效果最优。FIT和MT两种方法的结合提升了采集甲虫的种类、食性和体型等方面的覆盖度, 更利于对甲虫多样性及类群与生态环境功能互作的研究。3种方法所收集到的甲虫存在一定差异, 因此可以针对不同研究目的选取适宜的采集方式。
关键词:
Aims: The standardization of acquisition methods to collect insect specimens is a major component of insect diversity research. In light of the high species diversity, complex behavior, and wide distribution of insects, numerous active and passive acquisition methods have been developed to achieve different research goals. However, the use of active search acquisition methods is constrained by the presence of many interfering factors and poor reproducibility. Passive acquisition methods, such as flight interception trap (FIT), Malaise trap (MT) and pitfall trap (PT), have been widely adopted in different scenarios and have gradually become the most common methods for conducting insect diversity research due to their unique advantages. Despite their popularity, however, there is a lack of systematic research on the features and collecting effectiveness of these passive acquisition methods.
Methods: In this study, 13 sampling points in Shing Mun from Hong Kong, China were monitored in a one-month field survey (sampling frequency of about 2-3 days) using the three passive acquisition methods above (156 sets of equipment in total). These surveys were evaluated to determine each method's effectiveness for the beetle collection.
Results: A total of 6,380 beetle specimens of 197 species from 40 families were collected. The results of the study showed that: (1) There is a difference in the effectiveness of beetle collection by each acquisition method. Overall, FIT (36 families, 149 species) was more effective than MT (24 families, 79 species) and PT (17 families, 60 species). Ten families were collected by all the three methods. (2) The analysis of biodiversity indices and species-abundance distribution indicate the following: The richness index was the highest for FIT, followed by MT and PT. The dominance index was the highest for FIT, followed by PT and MT. The diversity index was the highest for MT, followed by FIT and PT. The evenness index was the highest for MT, followed by PT and FIT. The number of species with at least one individual collected by the three acquisition methods was very high. The species with more than one individual collected were widely distributed in time and space. There were fewer species from dominant families, though the total of individuals from these species accounted for a high proportion of all the collected beetles. (3) In terms of feeding habits, both FIT and PT enabled the collection of beetles from six dietary types. Among these, the algae-feeding family Ptiliidae was only collected by these two methods. (4) The plotted species accumulation curve demonstrated increased species discovery in a step-wise manner with gradually deceleration, which reflects the effectiveness of the three methods.
Conclusions: Each of the three acquisition methods have unique characteristics, but the comprehensive collection efficiency of FIT was markedly higher than MT and PT. Compared with PT, one of the most used acquisition methods, FIT and MT could enhance the coverage of species-richness, feeding habit, and body size of the beetles collected. This combination of collection methods would be conducive to better understand baseline beetle diversity and to conduct in-depth studies on the ecological functions and interactions of different groups. Furthermore, the beetles collected by each of the three methods were different to some extent, and thus a study's acquisition method should be selected according to the research goal and scientific problem to be addressed.
Keywords:
本文引用格式
滕备, 杨海东, 佟一杰, 梁敏轩, 张嘉康, 李英铭, 白明 (2021)
Bei Teng, Haidong Yang, Yijie Tong, Manhin Leung, Kahong Cheung, Yingming Lee, Benoit Guénard, Ming Bai (2021)
昆虫形态多样、行为复杂、数量庞大、种类丰富, 是生态系统的重要成员, 被认为在全球生物多样性中占据重要比重(Samways, 1993; 查玉平等, 2006; 何振等, 2007)。21世纪以来, 昆虫生物多样性成为当代生态学及环境科学的研究热点之一(Gaston, 2000; 郭玉永, 2003; Green & Bohannan, 2006; 杨斌等, 2011)。样本收集是研究昆虫多样性的重要基础。常见的昆虫采集方法通常分为主动式和被动式, 主动式采集方法包括扫网法、振落法、解剖朽木法等(杨集昆, 1958), 因其采集装备较为简单、便于携带而被广泛使用。被动式采集方法可重复性高、采集数量多、样本溯源精确, 近些年来受到国内外研究者的关注(周红章等, 2014; 张珍, 2016; 董会等, 2017), 被广泛用于基于样地的特定科学问题研究。罐诱法(pitfall trap, PT)是最为传统的被动式采集方法之一, 因其成本低、设计简单成为常用的昆虫采集方法(Martin, 1978; Mühlenberg, 1989)。然而, 罐诱法通常只能采集到生活于地表的无脊椎动物(如步甲、马陆等), 无法对大部分具有飞行能力的昆虫做到精准监测。因此, 其他被动式采集工具在昆虫多样性的研究中也逐渐得到应用, 如马氏网(Malaise trap, MT)、飞行阻隔器(flight interception trap, FIT)、吸虫塔、毒杀喷雾、冠层塔吊等(邵天玉等, 2015)。其中成本低廉、使用方便的马氏网和飞行阻隔器应用最为广泛, 但后者在国内的报道较少(杨宗武等, 2009; 聂瑞娥等, 2017)。综上所述, 在昆虫多样性研究日益重要且中国昆虫多样性研究广泛开展的背景下, 我们有必要对不同的采集方式进行综合比对, 以期为今后的昆虫多样性研究提供思路方法。
在全球定点布设长期样地, 定量评估昆虫多样性与环境之间的关系具有重要意义。在此背景下, 经中国科学院动物研究所白明研究员与英国自然历史博物馆Alfried Vogler教授研讨, 最终与诸多同行共同提出了“SITE100 (Site-based, Insects, Taxonomy, Environment, 100)” 国际大科学计划(详见项目网站
鞘翅目昆虫俗称甲虫, 是昆虫纲最大的类群, 全球已知约38万种, 地理分布十分广泛, 在地球上的任何角落几乎都可见到它们的身影(郭玉永, 2003; 亓东明, 2012)。甲虫多样的栖息环境和生活史导致不同类群所处的生态位和生存空间各不相同, 因此甲虫采集方法的选择和设定在多样性调查中十分重要。但采集方法上的限制导致国内针对甲虫的多样性调查研究多集中于活跃在地表或飞行能力较弱的种类, 对于不同高度空间中活跃的甲虫类群的了解尚少(李巧等, 2008; 张越等, 2014)。本文以鞘翅目昆虫作为研究对象, 使用飞行阻隔器、马氏网和罐诱3种被动式采集方法组成的立体式采集装备集群, 覆盖范围从地表到半高空, 同时基于丰富度、均匀度、优势度、多度分布等指标比较3种采集方法所收集甲虫的食性、体型、个体数、物种数等方面的相似性和差异性, 从而评估不同方法的收集效果。
1 材料与方法
1.1 甲虫的采集及鉴定
图1
图1
香港城门样地采集样点和3种被动式采集方法。A: 样点位置(圆点标注); B: 飞行阻隔器; C: 马氏网; D: 诱罐。
Fig. 1
The sampling points in Shing Mun, Hong Kong and the three passive acquisition methods. A, Layout of sampling points (dots indicated); B, Flight interception trap; C, Malaise trap; D, Pitfall trap.
飞行阻隔器在国外使用较早, 是一种针对飞行能力较强的昆虫的简单高效采集设备(Chung, 2004; Lamarre et al, 2012; Seibold et al, 2016)。本研究探索出了一套符合我国实际情况的飞行阻隔器, 将国外常用的由深色或黑色尼龙网制成的长方形纱网改成聚氯乙烯(polyvinyl chloride, PVC)屏幕。这种屏幕透明且光滑, 很难被飞行中的昆虫察觉, 从而使昆虫在飞行过程中撞击屏幕掉入到下方的收集槽中。槽内盛放相关药品, 根据研究目的选取不同的药剂配方: 盐水(5 mmol/L NaCl溶液)收集用于形态研究的标本; SDS和EDTA的混合液或高浓度的酒精收集用于分子生物学研究的昆虫标本, 该类药品能有效抑制DNA的降解(聂瑞娥等, 2017)。飞行阻隔器架设在山谷间的道路、溪流且靠近森林的昆虫的飞行通道上方, 安置地点设置两个牢固的支撑点用于固定外展PVC屏幕的长竹竿。同时, 本研究加大了水槽的尺寸, 改进后的飞行阻隔器能适应更多的生境, 采集效果较好。
马氏网是Townes型, 材料为100目的尼龙丝网, 整体构造类似一座尖顶房屋, 顶部一侧高一侧低, 底部为长方形(王章训等, 2021)。收虫器置于最高处, 里面放置无水乙醇, 安装位置通常在昆虫主要活动区域。
诱罐布设在植被茂盛且落叶层较厚, 或者靠近溪流的较为平坦的地带。每个样点的10个诱罐的间距不等, 但尽量选择安置在小生境良好的地点。具体操作如下: 在地面挖一个与广口塑料杯深度相同(高20 cm, 口径10 cm)的坑; 将无盖的广口塑料杯置于坑内, 杯沿与地面齐平, 杯内放置无水乙醇和蜂蜜或腐肉的混合物; 在广口杯上方距瓶口约1/4处打上小孔, 防止因雨水注满导致标本流失(亓东明, 2012)。
1.2 多样性分析
Margalef丰富度指数(R):
Shannon-Wiener多样性指数(H'):
Pielou均匀度指数(J):
Berger-Parker优势度指数(D):
Jaccard相似性系数(Cj):
式中, S为种类数, N为其中一种方法采集到的甲虫总个体数, Pi为第i种的个体数占总个体数的比值, Nt为采集到的甲虫所有种的总个体数。在相似性系数公式中: a为方法A所采集的物种数, b为方法B所采集的物种数, c为方法A和B共同采集的物种数, Cj的值为0-0.25时为极不相似; 0.25-0.50时为中等不相似; 0.50-0.75时为中等相似; 0.75-1.00时为极相似(Jaccard, 1912)。
1.3 食性和体型分析
依据张兵兰等(2004), 将甲虫的食性划分为6类(蛀木性、菌食性、捕食性、腐食性、植食性、藻食性)。选取每种甲虫的高清背面照片对体长和体宽进行测量, 在SPSS 16.0软件中以3种采集方式所采集甲虫的体长值和体宽值数据分组作为横坐标, 体长值和体宽值作为纵坐标绘制箱型图。
1.4 多度分布
1.5 物种累积曲线
通过物种累积曲线(species accumulation curve)对采样是否充分进行判断(Moreno & Halffter, 2001)。如果曲线一直急剧上升说明采样不充分, 如果曲线先是急剧攀升然后逐渐舒缓变为一条渐近线则说明采样充分, 所获数据可以继续后续的分析(Ugland et al, 2003; 李巧, 2011)。本研究基于Estimate S 9.1.0软件, 使用多度的估计量(abundance-based coverage estimator, ACE)和盖度的估计量(incidence-based coverage estimator, ICE)并结合实际采样中的物种数量来评估3种方法采样是否充分(Chao et al, 2005)。
2 结果
2.1 3种被动采集方式获得的甲虫多样性
本次调查共采集到甲虫6,380头, 隶属于40科。3种方法采集甲虫的科数、物种数、个体数以及多样性指数均存在较大差异(图2)。丰富度指数为FIT > MT > PT; 优势度指数为FIT > PT > MT; 多样性指数为MT > FIT > PT; 均匀度指数为MT > PT > FIT。科数和物种数均为FIT > MT > PT; 个体数为FIT > PT > MT。有10个科在3种采集方法中均有出现, 即大蕈甲科、花蚤科、露尾甲科、毛蕈甲科、拟球科、象甲科、叶甲科、隐翅虫科、隐唇叩甲科及长角象科, 其中象甲科的物种丰富度及采集到的个体数最高。卷象科、瓢虫科、天牛科和泽甲科只出现在马氏网法采集中。而捕蠹科、出尾扁甲科、姬蕈甲科、皮蠹科、皮坚甲科、薪甲科、阎甲科、幽甲科、长蕈甲科仅在飞行阻隔器采集法中出现。
图2
图2
3种采集方法采集的甲虫多样性统计。A:科数、物种数及个体数; B: 多样性指数。
Fig. 2
Diversity statistics of beetles collected by three collection methods. A, Number of beetle families, species and individuals; B, The diversity indices of beetles. FIT, Flight interception trap; MT, Malaise trap; PT, Pitfall trap.
2.2 3种被动采集方式获得的甲虫的体型数据
FIT和MT所采集到的甲虫的体长和体宽值之间差别较小, 参数基本分布于同一区间, 而PT采集的甲虫体长和体宽的平均值均低于FIT和MT (图3A, 3B)。
图3
图3
3种采集方法采集的甲虫基于体长(A)、体宽(B)、食性(C)和物种多度(D)的比较研究。A和B图中的数字表示体型异常值对应的标本编号。
Fig. 3
Comparison of the body length (A), body width (B), feeding habit (C) and species abundance (D) among beetles collected by the three methods. The numbers in figures A and B represent specimen numbers corresponding to body size outliers. FIT, Flight interception trap; MT, Malaise trap; PT, Pitfall trap.
2.3 3种被动采集方式获得的甲虫食性
本次调查采集到的甲虫以蛀木性(9科)、菌食性(9科)、捕食性(8科)、腐食性(8科)为主, 植食性(5科)次之, 藻食性(1科)较少。
3种方法采集到的甲虫食性组成有所差异(图3C)。FIT和PT均采集到了6类食性甲虫, 而马氏网未采集到藻食性甲虫。其中飞行阻隔器采集的标本中, 每种食性对应的科级数量最多, 尤其是菌食性甲虫; 马氏网的采集效果在植食性甲虫、蛀木性甲虫和捕食性甲虫中科级数量上高于罐诱法, 与飞行阻隔器的采集效果相似; 罐诱的采集效果在菌食性甲虫和腐食性甲虫的科级数量上高于马氏网; 藻食性的甲虫(缨甲科)只出现在飞行阻隔器和诱罐中。
2.4 甲虫群落物种-多度分布
3种采集方法的甲虫群落物种-多度曲线(图3D)表明: 个体数为1头的稀有种较多, 部分甲虫类群采集到的个体数较多但是种类却相对较少, 优势类群的个体数更多。
2.5 3种方法采集的甲虫群落相似性分析
FIT和PT、MT和PT的相似性系数均在0-0.25范围内, 为极不相似; FIT和MT的相似性系数在0.25-0.50范围内, 为中等不相似(图4)。
图4
图4
3种方法采集的甲虫科数和种数的相似性
Fig. 4
Similarity of beetle family and species among the three sampling methods. FIT, Flight interception trap; MT, Malaise trap; PT, Pitfall trap.
2.6 物种累积曲线结果分析
图5
图5
3种方法下基于样点数的物种累积曲线。A: 飞行阻隔器; B:马氏网; C: 诱罐。
Fig. 5
Species accumulation curves based on number of sampling points under three methods. A, Flight interception trap; B, Malaise trap; C, Pitfall trap.
3 讨论
3.1 不同采集装备采集效果比较
我国有关飞行阻隔器的正式应用和报道较少(杨宗武等, 2009; 聂瑞娥等, 2017)。聂瑞娥等(2017)在SITE100秦岭样地中采用了飞行阻隔器, 结果表明该装置对膜翅目、鞘翅目、双翅目等有较好的收集效果。在国外, 飞行阻隔器的应用较早且广泛。Masner和Goulet (1981)利用飞行阻隔器捕捉膜翅目昆虫, 效果显著; Hill和Cermak (1997)利用飞行阻隔器拦截澳大利亚森林树冠层的鞘翅目昆虫, 效果较为理想; Campos等(2000)对巴西的膜翅目等昆虫的飞行阻隔器拦截效果进行了比较, 发现采用黄色托盘的飞行阻隔器效果更好, 能采集到的昆虫种类更多; 美国西弗吉尼亚大学(Dobony & Edwards, 2001)用丙烯酸透明玻璃制作飞行拦截网, 研究表明该装置几乎对所有目的昆虫都能有效拦截; Chung (2004)在马来西亚用飞行拦截网在热带雨林进行昆虫垂直分层采集研究, 采集到的昆虫的多样性十分丰富。
van Achterberg (2009)的研究表明, 马氏网对双翅目、鳞翅目和膜翅目等昆虫的收集效果较好。但马氏网对于碰到障碍物时掉落的昆虫(如具假死性的甲虫)或向下飞行的昆虫(如蛛蜂)的采集效果不够理想(杨宗武等, 2009)。周红章等(2000)在湖北神农架自然保护区主要采用罐诱法结合扫网和灯诱法进行昆虫采集, 该调查结果显示膜翅目和鞘翅目是此次调查中昆虫纲数量最丰富的两个目; 膜翅目以蚁科最为丰富, 而鞘翅目中数量最丰富的类群是隐翅虫科、步甲科和叶甲科。何振等(2007)采用罐诱法对八大公山油茶林和亚热带天然次生林的节肢动物进行采集和研究, 结果显示弹尾目、蜱螨目为优势类群, 膜翅目的蚁科和鞘翅目的步甲科为常见类群。目前还缺少对于3种被动采集装备(飞行阻隔器、马氏网和诱罐)所构成的立体装备集群的采集效果的研究, 因此本研究对3种被动采集方法的甲虫采集效果进行比较, 并对野外采集提供一定的参考价值。
从本次调查采集的科级水平来看, 部分类群的捕获伴随着采集方法的专有性, 飞行阻隔器和马氏网法弥补了罐诱法所不能采集到的19个科。从所采集甲虫样本的食性方面分析, 本次调查与香港嘉道理农场次生林区的甲虫调查结果存在较大差异(张兵兰等, 2004), 尽管两个样地的地理位置相距不远, 气候条件基本一致, 但是本次新增采集到的菌食性和捕食性甲虫约占总体的40%。本次研究中菌食性和捕食性甲虫的大量增加可能与采集方法的不同有关, 嘉道理农场次生林区的采集工作主要通过碰撞诱捕网和黑光灯诱集完成, 所以针对一些飞行能力较强的捕食性甲虫和喜欢爬行或躲藏在菌物上的菌食性甲虫的采集效果不理想; 与此同时, 我们发现马氏网对于藻食性的甲虫(如缨甲科)的采集效果较差, 通过飞行阻隔器和罐诱可以弥补这方面的采集缺陷。
通过对甲虫的个体数、物种数、体型等方面的比较可以看出, 飞行阻隔器对善于飞行的大型甲虫的采集效果较好, 如腐食性和蛀木性的甲虫; 马氏网能够采集到许多在夜间飞行但无趋光性的甲虫, 可以弥补夜间灯诱法不能采集到的甲虫类群; 罐诱法能够采集到一些喜欢在地表爬行的甲虫, 如拟步甲科和象甲科, 这些类群多数种类的后翅退化, 不具有飞行能力或飞行能力弱(任国栋和于有志, 1999; 黄人鑫, 2005)。通过对本研究3种方法采集到的甲虫的体型进行分析发现, 飞行阻隔器和马氏网采获的甲虫体型较大, 而诱罐所收集的甲虫体型较小。从种类的角度来看, 飞行阻隔器和马氏网采集到的甲虫种类存在差异, 原因可能是由于两种设备安装高度不同, 造成空间上的差异。飞行阻隔器安装高度通常高于马氏网, 因此采集到的样本多为飞行能力强、飞行高度较高的甲虫。马氏网主要用于拦截靠近地面飞行或爬行的甲虫。罐诱法安装最为简单, 便于携带, 且布置点容易选择, 因此对爬行类昆虫具有较好的收集效果, 该方法的使用度较高, 在本研究中采集到了大量的小蠹和隐翅虫。同时, 物种累积曲线结果反映出在3种方法下采集到甲虫的试验抽样量充分, 说明本次采集的甲虫标本的数量足够, 可以进行后续的多样性分析。结合上述研究以及此次城门甲虫采集效果来看, 在进行物种多样性调查时应采取多方法相结合、相补充的方式进行, 以满足对不同生境下昆虫取样的充分性。
3.2 3种采集装备在城门样地调查的不足之处
本次调查仍存在一些不足: (1)采集时间较短, 季节单一。本研究仅在5月进行了为期24天的采样, 而其他月份香港城门甲虫的物种多样性或组成结构依然亟需补充; (2)虽然罐诱法能够采集到许多地表爬行的甲虫, 但是对于栖息在地表或地下层, 生活隐蔽或几乎不在地表活跃的甲虫(如土壤内或落叶层, 苔藓内)采集的种类和个体数量较少; (3)本研究开展期间恰逢大量风雨天气, 气候不稳定, 可能对采集效果产生较大影响。因此该调查结果并不能全面地反映城门地区的甲虫多样性。
3.3 展望
在进行昆虫物种多样性研究时, 不同采集方法所采集的昆虫类群以及各项多样性指标均有差异(Ades & Dudgeon, 1999)。依据不同昆虫类群自身的特点和习性来选择采集方法, 多种方法综合运用才能使采集效果更好。除此以外, 还应考虑研究调查的目的和采集点的实际环境情况, 灵活制定采集方式, 并对采集设备进行调整和改进, 以适应具体的研究内容。本研究首次对该地区甲虫进行了系统性探究, 积累了许多宝贵的经验, 本研究同时也为“SITE100”国际大科学计划贡献了一些数据, 未来还需进行进一步的研究和探索, 以期获得中国香港样地昆虫多样性格局的全貌。3种采集方法除了可以收集甲虫以外, 还可以收集到一些其他动物, 包括一些其他目的昆虫以及钩虾、蛙类、蜥蜴、小型哺乳动物(如鼩鼱、蝙蝠)等非昆虫类群, 故这3种被动采集方法的采集效果有待在更多动物类群、更多采集地点进行试验, 对于未来生物多样性评估试验同样具有重要意义。
致谢
感谢香港渔农自然护理署的陈坚峰先生、叶彦博士以及甲虫工作小组的同事在香港昆虫多样性调查工作中的大力支持和帮助。感谢中国科学院动物研究所杨星科研究员、聂瑞娥博士、路园园博士、杨美霞博士、陈炎栋、贺旭、阮用颖、李猷、李露露和河北农业大学卢威成在标本采集、整理、数据收集和文稿撰写等方面提供的帮助。此外, 杨玉霞、梁红斌、刘万岗、林美英、贾风龙、高传部、彭中、宋晓斌、殷子为、王兴民、苑彩霞、王志良、李学燕、边冬菊、刘蓝玉、李开琴、周润等老师提供了标本鉴定方面的帮助, 在此一并感谢。
参考文献
Insect seasonality in Hong Kong: A monsoonal environment in the northern tropics
Comparison of the efficiency of flight interception trap models for sampling Hymenoptera and other insects
DOI:10.1590/S0301-80592000000300001 URL [本文引用: 1]
A new statistical approach for assessing similarity of species composition with incidence and abundance data
DOI:10.1111/ele.2005.8.issue-2 URL [本文引用: 1]
Vertical stratification of beetles (Coleoptera) using flight interception traps in a lowland rainforest of Sabah, Malaysia
A new flight interception trap for arthropod sampling
Collection, production and preservation of insect specimen
昆虫标本的采集、制作与保存
Discussion on the characteristics of cultural resources in Hong Kong's country parks and its protection and utilization
浅议香港郊野公园人文资源的特色与保护利用
Global patterns in biodiversity
DOI:10.1038/35012228 URL [本文引用: 1]
Spatial scaling of microbial biodiversity
DOI:10.1016/j.tree.2006.06.012 URL [本文引用: 1]
The current research state and progress of insect biodiversity
昆虫生物多样性的研究现状与进展
Species diversity of insects in Badagongshan National Nature Reserve of Hunan Province
湖南八大公山自然保护区昆虫物种的多样性
A new design and some preliminary results for a flight intercept trap to sample forest canopy arthropods
DOI:10.1111/aen.1997.36.issue-1 URL [本文引用: 1]
The distribution of the flora in the alpine zone
DOI:10.1111/nph.1912.11.issue-2 URL [本文引用: 1]
Application of excel in calculation of biodiversity indices
应用Excel软件计算生物多样性指数
A comparison of two common flight interception traps to survey tropical arthropods
DOI:10.3897/zookeys.216.3332 URL [本文引用: 1]
Species accumulation curves and its application
物种累积曲线及其应用
Initial studies of the insect community of Leucaena leucocephala plantation in Yuanmou Arid-hot Valley, Yunnan
云南元谋干热河谷新银合欢林昆虫群落初探
Measurement of biotic community diversity. I. α diversity (Part 2)
生物群落多样性的测度方法. I.α多样性的测度方法(下)
The Insects and Arachnids of Canada, Part 1: Collecting, Preparing and Preserving Insects, Mites, and Spiders
A new model of flight interception trap for some hymenopterous insects
On the measure of sampling effort used in species accumulation curves
DOI:10.1046/j.1365-2664.2001.00590.x URL [本文引用: 1]
The application and effectiveness of a flight interception trap for insect collecting
飞行阻隔器在昆虫采集中的应用探究
Diversity of Coleoptera in the south of Mt. Gongga, Jiulong County
贡嘎山南麓鞘翅目昆虫多样性研究初探: 以九龙县为例
Insects in biodiversity conservation: Some perspectives and directives
DOI:10.1007/BF00056672 URL [本文引用: 1]
Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood
DOI:10.1111/1365-2664.12607 URL [本文引用: 1]
Butterfly community structure and species- abundance distribution in different habitats in the Xinglong Mountains National Nature Reserve
DOI:10.17520/biods.2019386 URL [本文引用: 1]
兴隆山国家级自然保护区不同生境的蝴蝶群落结构与种-多度分布
Current research state and progress of utilizing suction trap for insect biodiversity
利用吸虫塔研究昆虫生物多样性的现状与展望
The species- accumulation curve and estimation of species richness
DOI:10.1046/j.1365-2656.2003.00748.x URL [本文引用: 1]
Can Townes type Malaise traps be improved? Some recent developments
Composition and spatial distribution pattern of ground-dwelling beetle communities in Yeyahu Wetland, Beijing
DOI:10.3724/SP.J.1003.2009.08161
[本文引用: 1]
In this paper, ground-dwelling beetle communities (GDBCs) from 32 sampling sites with five main vegetation types, two well-conserved ones and three degradated ones, were investigated in Yeyahu Wetland of Beijing by pitfall traps from April to December, 2007, and the influence of wetland degradation and vegetation variation on the composition of GDBCs was studied at the family level. A total of 42 families were collected in the whole sampling period. Among these, Carabidae and Staphylinidae were dominant, while Anthicidae, Eumolpidae and Lathridiidae were subdominant. In the five types of vegetation investi-gated, the activity density, family level richness and the Shannon-Wiener diversity index (<em>H’</em>) of GDBCs were not significantly different between the well-conserved <em>Phragmites communis</em> and <em>Cyperus glomeratus</em> ones. However, the beetle activity density in these two well-conserved vegetations, and the family richness in the <em>Cyperus glomeratus</em> one were significantly higher than those of the three degradated ones. It was showed by canonical correspondence analysis (CCA) to the relationship between the composition of GDBCs and nine environmental factors, that there was an obviously correspondance between the distribution of the 32 sam-pling sites in CCA ordination diagram and the vegetation types, and soil water content, plant coverage, plant biomass, and litter coverage were the major factors affecting on the composition and spatial distribution of GDBCs in the wetland. According to the correlation analysis, we also found that the correlation among beetle activity density and the soil water content, plant biomass and coverage was all significantly positive (<em>P</em><0.05 or <em>P</em><0.01), and it was between beetle family richness and plant biomass (<em>P</em><0.05); while that between the beetle diversity index (<em>H’</em>) and plant coverage was significantly negative (<em>P</em><0.01). Moreover, in a nonlinear regression analysis, the change of soil water content could explain about 57% of the variation in beetle activ-ity density. A synthetic environmental variable, <em>WBC</em> (Water-Biomass-Coverage), which reflects the situation of soil water content, plant biomass and coverage, was obtained by principal component analysis (PCA) of the nine environmental factors. On the basis of relationship between beetle activity density and <em>WBC</em>, the five vegetation types could be divided into three extremely different groups. Our results showed that maintaining appropriate wetland landscapes is vital for beetle protection.
北京野鸭湖湿地地表甲虫群落组成与空间分布格局
DOI:10.3724/SP.J.1003.2009.08161
[本文引用: 1]
2007年4–10月在北京野鸭湖湿地两种保存较好的湿地植被类型和3种主要的退化植被类型中设立了32个样地, 采用陷阱法调查地表甲虫群落的组成, 并在科级水平上探讨了湿地退化及植被类型变化对地表甲虫群落组成的影响。整个采样周期共采集甲虫标本42科, 其中步甲科和隐翅虫科为优势科, 蚁形甲科、肖叶甲科和薪甲科为亚优势科。在所研究的5种植被类型中, 湿地景观保存较好的芦苇(Phragmites communis)带与球穗莎草(Cyperus glomeratus)带的甲虫群落活动密度、科丰富度和Shannon-Wiener多样性指数(H’)均无显著差异, 而上述两种植被类型的甲虫活动密度以及球穗莎草带的甲虫科丰富度均显著高于3种退化的植被类型。对地表甲虫群落组成与9个环境因子进行的典范对应分析(CCA)表明, 32个样地在CCA排序图中的分布与植被类型之间存在明显的对应关系, 土壤含水量、植物盖度、植物生物量和枯落物盖度是影响地表甲虫群落组成及空间分布的主要环境因子。相关和回归分析结果也显示, 甲虫群落的活动密度与土壤含水量、植物生物量和植物盖度均极显著或显著正相关, 科丰富度与植物生物量显著正相关, 多样性指数(H’)与植物盖度极显著负相关; 其中土壤含水量的变化能够解释甲虫群落活动密度总方差的57%。此外, 通过主成分分析获得了反映土壤含水量、植物生物量和植物盖度综合作用的环境变量WBC (Water-Biomass-Coverage)。依据地表甲虫活动密度与WBC的关系, 可将5种植被类型分为彼此差异极显著的3组。研究结果表明保持良好的湿地景观对于保护湿地甲虫具有重要意义。
Community structure and diversity of arthropod in shelterbelt of Laogang Comprehensive Utilization Base of Solid Waste
利用马氏网评估老港固废物综合利用基地防护林节肢动物群落结构及多样性
Study on the diversity of moths under laminate in larch plantation
长白落叶松人工林灯下蛾类昆虫多样性研究
A new method of insect acquisition: Flight interception trap
昆虫采集新方法: 飞行拦截网
Community diversity of butterfly in Houhe National Nature Reserve
后河国家级自然保护区蝴蝶群落多样性研究
Diversity comparisons of beetles (Insecta: Coleoptera) between impact flight trap and ultraviolet light trap in the secondary forest at Kadoorie Farm, Hong Kong
香港嘉道理农场次生林区碰撞诱捕网和黑光灯捕虫器采集所得鞘翅目甲虫多样性比较
DOI:10.17520/biods.2004036
[本文引用: 2]
本文根据1990-1995年在香港嘉道理农场次生林区采集的昆虫标本,首次分析了鞘翅目及其优势科的种类、数量和季节性变化,以及由碰撞诱捕网和黑光灯捕虫器采集所得甲虫在种类、数量和季节性上的差异。在13 260号标本中,已鉴定到科的有13 253号,分属45科,231种。其中,朽木甲科(Alleculidae)、毛蕈甲科(Biphyllidae)、丸甲科(Byrrhidae)、坚甲科(Colydiidae)、拟球甲科(Corylophidae)、隐食甲科(Cryptophagidae)、水缨甲科(Hydroscaphidae)、伪叶甲科(Lagriidae)、薪甲科(Lathridiidae)、泽甲科(Limnichidae)、黑蕈甲科(Zopheridae)等11个科为香港地区的首次报道,约占本次调查科总数的25%。分析表明:(1)该次生林区的鞘翅目甲虫以蛀木性为主。天牛科(Cerambycidae)、瓢虫科(Coccinellidae)、象甲科(Curculionidae)、花蚤科(Mordellidae)、金龟甲科(Scarabaeidae)、小蠹科(Scolytidae)等6科均为多样性较高(种类15或者个体数量200)的优势科。(2)鞘翅目个体数量季节性明显,每年自2月开始数量逐渐增加, 6-7月为甲虫发生的高峰期,8月显著减少。各优势科甲虫的季节性也存在一定的差异,庞大的小蠹标本数量(85%)说明在此调查期间该科正处于大发生时期。(3)黑光灯捕虫器所捕的甲虫科类和种类较之碰撞诱捕网所捕不尽相同,黑光灯捕虫器所捕的甲虫数量发生高峰期比碰撞诱捕网所捕的甲虫提前一个月。(4)各项多样性指数对不同捕虫器采集所得鞘翅目的测度差异明显,黑光灯捕虫器所捕甲虫的多样度和均匀度指数高于碰撞诱捕网。
Herb layer species abundance distribution patterns in different seasons in an old-growth temperate forest in Changbai Mountain, China
DOI:10.17520/biods.2015089
[本文引用: 1]
The herbaceous layer is an important component of forest ecosystems and plays an important role in maintaining forest biodiversity. To understand the mechanisms shaping the forest herb community patterns over multiple growing seasons, we used herbaceous data collected in a 25 ha broad-leaved Korean pine (Pinus koraiensis) mixed forest plot in Changbai Mountain, Northeast China and fitted species abundance distributions (SADs) using different models. We used both pure statistical models including log-normal, log-series, and mechanistic models, including two niche models (broken-stick and niche preemption) and two neutral models (metacommunity zero-sum multinomial distribution and Volkov model). Further, we applied the AIC and Kolmogorov-Smirnov tests to compare the goodness-of-fit of these models. Our results showed: (1) The observed SADs of the herb layer varied by season. While there were similar proportions of rare and common species in spring, there were more species with moderate abundances in summer and more rare species in autumn. (2) The best-fitting models of SADs were similar in different seasons. In our analyses, the log-series model was the best pure statistical model across the three seasons. For the mechanistic models, neutral models performed better at explaining patterns of SADs than niche models. The metacommunity zero-sum multinomial distribution model was the best model in spring and summer and the Volkov model was the best one in autumn. This indicates that stochastic processes may play a dominant role in maintaining the herb species abundance distributions. Our study showed that although the SAD patterns varied over growing seasons for the herb layer in the broad-leaved Korean pine mixed forest, the underlying mechanisms governing these patterns are similar and neutral models always perform better than niche models in fitting the SADs.
长白山阔叶红松林草本层物种多度分布格局及其季节动态
DOI:10.17520/biods.2015089
[本文引用: 1]
草本层是森林生态系统的重要组成部分, 对维持森林生物多样性具有重要意义。本文以长白山阔叶红松(Pinus koraiensis)林25 ha固定监测样地为研究平台, 运用不同的统计模型(对数正态模型和对数级数模型)及机理模型(包括生态位模型: 断棍模型和生态位优先占领模型; 中性模型: 复合群落零和多项式模型和Volkov模型), 对不同季节草本物种多度分布进行拟合。采用Kolmogorov-Smirnov和AIC检验确定最优模型, 以揭示草本层物种多度分布格局随季节的变化规律, 探讨草本层物种组成与结构背后的生态学过程。结果表明: (1)草本层物种多度分布季节差异明显。春季各多度级物种数差异不大, 夏季中间种较多, 秋季则是稀有种较多; (2)模型拟合结果显示, 不同季节草本层物种多度分布的最优拟合模型相近。统计模型中对数级数模型表现最优, 机理模型中中性模型的拟合效果优于生态位模型。复合群落零和多项式模型较好地拟合了春夏季草本物种多度分布, Volkov模型较好地拟合了秋季草本物种多度分布。综上所述, 尽管长白山阔叶红松林草本植物不同季节的物种多度分布格局不尽一致, 但其背后的构建机制相似, 中性随机过程在草本层物种多样性维持过程中显得更为重要。
Investigation on community ecology and species- abundance distribution of fleas on small mammals in 21 counties of Yunnan, China
云南省21县市小兽体表蚤类群落生态及种多度分布
The analyses of the species diversity and fauna distribution of Coleoptera in Beijing- Tianjin-Hebei of China
京津冀地区甲虫物种多样性与区系分布
A preliminary study on effective collection of plant pest and disease specimens
有效收集作物病虫害标本初探
Insect abundance and environmental effects in Shennongjia Natural Reserve, Hubei Province
湖北神农架自然保护区昆虫的数量变化与环境关系的初步研究
Collecting methods and sampling techniques of ground dwelling and predating Carabids and Staphylinids beetles
土壤步甲和隐翅虫的采集与田间调查取样技术
/
〈 |
|
〉 |
