研究报告

半干旱草原大中型土壤动物在畜粪分解中的作用

  • 程建伟 ,
  • 王亚东 ,
  • 王桠楠 ,
  • 李莹 ,
  • 郭颖 ,
  • 白正 ,
  • 刘新民 ,
  • 李永宏
展开
  • 1.太原师范学院地理科学学院, 山西晋中 030619
    2.内蒙古大学生态与环境学院, 蒙古高原生态学与资源利用教育部重点实验室/省部共建草地生态学国家重点实验室培育基地, 呼和浩特 010021
    3.内蒙古师范大学生命科学与技术学院, 呼和浩特 010022

收稿日期: 2022-10-10

  录用日期: 2022-11-28

  网络出版日期: 2022-12-08

基金资助

国家自然科学基金(32071564);国家自然科学基金(41561055);内蒙古自治区科技计划(2019ZD007);内蒙古自治区科技计划(2021ZD0011)

Effects of soil macro- and meso-fauna on the decomposition of cattle and horse dung pats in a semi-arid steppe

  • Jianwei Cheng ,
  • Yadong Wang ,
  • Yanan Wang ,
  • Ying Li ,
  • Ying Guo ,
  • Zheng Bai ,
  • Xinmin Liu ,
  • Frank Yonghong Li
Expand
  • 1. School of Geography Science, Taiyuan Normal University, Jinzhong, Shanxi 030619
    2. Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021
    3. School of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022

Received date: 2022-10-10

  Accepted date: 2022-11-28

  Online published: 2022-12-08

摘要

土壤动物是陆地生态系统的重要组分, 在有机质分解过程中具有重要作用。目前有关土壤动物在生态系统分解中的作用研究主要聚焦于植物凋落物的分解, 而对动物粪便分解的研究稀少。本研究在内蒙古典型草原设置了马粪和牛粪分解原位实验, 使用不同孔径的金属隔离网排除不同体型大小的土壤动物, 通过测定大中型土壤动物对畜粪分解过程中质量损失、碳氮含量和微生物呼吸以及土壤养分动态变化的影响, 解析其在分解中的作用。设置5个处理, 即CK, 仅土壤, 无粪; T0, 粪添加+0.425 mm隔离网(排除了粪居型和掘洞型粪金龟和中型土壤动物); T1, 粪添加+1 mm隔离网(排除了粪居型和掘洞型粪金龟); T2, 粪添加+2 mm隔离网(排除了掘洞型粪金龟); T3, 仅粪添加(不排除土壤动物)。结果表明: (1)在畜粪分解60天内, 土壤动物对畜粪的干质量损失没有显著的促进作用(P > 0.05); 相反, 在畜粪分解360天, 不隔离土壤动物处理(T3)显著地提高了牛粪干质量损失(P < 0.05), 而降低了马粪干质量损失(P < 0.05)。(2)在畜粪分解的60天内, 畜粪中碳和氮含量下降速度在有土壤动物存在的情况下(T3)快于隔离土壤动物(T0和T1)。(3)两种畜粪添加增加了土壤微生物的呼吸, 且这种增加趋势在实验的第15天和第30天在土壤动物存在时(T3)最明显。(4)与对照(CK)相比, 马粪添加处理提高了土壤速效氮、有机碳的含量和土壤含水量, 且这种增加趋势在排除掘洞型粪金龟(T2)和不排除土壤动物(T3)条件下表现更显著(P < 0.05), 而牛粪添加处理没有明显改变这些指标(P > 0.05)。研究表明, 分解初期粪金龟的取食和活动会改变畜粪的理化性质, 进而影响分解后期土壤生物在畜粪分解中的作用。

本文引用格式

程建伟 , 王亚东 , 王桠楠 , 李莹 , 郭颖 , 白正 , 刘新民 , 李永宏 . 半干旱草原大中型土壤动物在畜粪分解中的作用[J]. 生物多样性, 2022 , 30(12) : 22575 . DOI: 10.17520/biods.2022575

Abstract

Aims: Soil fauna as the key component of terrestrial ecosystems, playing an important role in decomposition of animal dung, mineralization of organic matter and turnover of soil nutrients. Many studies have been done on the soil fauna’s effects on plant litter’s decomposition. Still, less information is available on their impact on the decomposition of animal dung.
Methods: Here we conducted a field experiment in a temperate semi-arid steppe ecosystem to investigate the effect of the different soil fauna groups with different body sizes on the decomposition of horse and cattle dung pats on the soil surface over a one-year period. The experiment had five treatments: CK, soil only, no dung nor soil fauna; T0, dung pat covered with a wire-mesh-cage of 0.425 mm holes (excluding dung beetles and soil meso-fauna); T1, dung pat covered with a wire-mesh-cage of 1 mm holes (excluding dung beetles); T2, dung pat covered with a wire-mesh-cage of 2 mm holes (excluding tunneler dung beetle); T3, exposed dung (with no exclusion of soil fauna).
Results: We found that (1) compared with dung only (excluding dung beetles and soil meso-fauna) treatment (T0), the presence of soil fauna (T1, T2 and T3) did not enhance the dry mass loss of livestock dung during the first 60 days of the experiment; in contrast, in the presence of all soil fauna (T3) significantly increased the dry mass loss of cattle dung but decreased that of horse dung at the end of the experiment (at day 360). (2) Soil fauna also enhanced the decline rate of carbon and nitrogen content in dung during the first 60 days of the experiment. (3) Dung addition increased the soil microbial respiration, and the increase was most obvious in the presence of soil fauna (T3) on days 15 and 30 of the experiment. (4) Compared to the soil with no dung (CK), the soil with horse dung had higher contents of soil available N, soil organic carbon and soil moisture, and the contents were higher in the presence of soil fauna (T2 and T3); whereas the soil with cattle dung had no changes.
Conclusion: We conclude that the feeding and activities of dung beetle in the early stage of dung decomposition alter the physicochemical properties of dung, which indirectly affect the role of soil biota in the decomposition in the later stage.

参考文献

[1] Cheng JW, Li FY, Wang YD, Wang YN, Liu XM, Zhang JZ, Wang ZY, Li YL, Wang H, Yang ZP, Potter MA (2022) Dweller and tunneler dung beetles synergistically accelerate decomposition of cattle and horse dung in a semi-arid steppe. Agriculture, Ecosystems & Environment, 329, 107873.
[2] Cheng JW, Liu XM, Hao BH, Zhang XY, Zhang YP, Ma WH (2017) Effects of nitrogen deposition on ground-dwelling arthropods in a temperate grassland of Inner Mongolia. Chinese Journal of Ecology, 36, 2237-2245. (in Chinese with English abstract)
[2] [ 程建伟, 刘新民, 郝百惠, 张芯毓, 张宇平, 马文红 (2017) 氮沉降对内蒙古典型草原地表节肢动物的影响. 生态学杂志, 36, 2237-2245.]
[3] Dormont L, Epinat G, Lumaret JP (2004) Trophic preferences mediated by olfactory cues in dung beetles colonizing cattle and horse dung. Environmental Entomology, 33, 370-377.
[4] Du ZY, Cai YJ, Wang XD, Zhang B, Du Z (2019) Research progress on grazing livestock dung decomposition and its influence on the dynamics of grassland soil nutrients. Acta Ecologica Sinica, 39, 4627-4637. (in Chinese with English abstract)
[4] [ 杜子银, 蔡延江, 王小丹, 张斌, 杜忠 (2019) 放牧牲畜粪便降解及其对草地土壤养分动态的影响研究进展. 生态学报, 39, 4627-4637.]
[5] Du ZY, Wang XD, Xiang J, Wu Y, Zhang B, Yan Y, Zhang XK, Cai YJ (2021) Yak dung pat fragmentation affects its carbon and nitrogen leaching in Northern Tibet, China. Agriculture, Ecosystems & Environment, 310, 107301.
[6] Edwards PB (1991) Seasonal variation in the dung of African grazing mammals, and its consequences for coprophagous insects. Functional Ecology, 5, 617-628.
[7] Evans KS, Mamo M, Wingeyer A, Schacht WH, Eskridge KM, Bradshaw J, Ginting D (2019) Soil fauna accelerate dung pat decomposition and nutrient cycling into grassland soil. Rangeland Ecology & Management, 72, 667-677.
[8] García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 16, 1045-1053.
[9] Guo YY, Cao JM, Che ZB, Yang HJ, Huang XY, Lu WH (2021) Effects of dung beetles on decomposition of cattle dung in spring and autumn in a Seriphidium-dominated desert, China. Chinese Journal of Applied Ecology, 32, 1854-1862. (in Chinese with English abstract)
[9] [ 郭亚亚, 曹佳敏, 车昭碧, 杨寒珺, 黄星宇, 鲁为华 (2021) 粪甲虫对绢蒿荒漠春秋两季牛粪分解的影响. 应用生态学报, 32, 1854-1862.]
[10] He YX, Sun G, Luo P, Wu N (2009) Effects of dung deposition on grassland ecosystem: A review. Chinese Journal of Ecology, 28, 322-328. (in Chinese with English abstract)
[10] [ 何奕忻, 孙庚, 罗鹏, 吴宁 (2009) 牲畜粪便对草地生态系统影响的研究进展. 生态学杂志, 28, 322-328.]
[11] Holter P (2016) Herbivore dung as food for dung beetles: Elementary coprology for entomologists. Ecological Entomology, 41, 367-377.
[12] Holter P, Scholtz CH (2007) What do dung beetles eat? Ecological Entomology, 32, 690-697.
[13] Johnson SN, Lopaticki G, Barnett K, Facey SL, Powell JR, Hartley SE (2016) An insect ecosystem engineer alleviates drought stress in plants without increasing plant susceptibility to an above-ground herbivore. Functional Ecology, 30, 894-902.
[14] Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 5, 588-595.
[15] Liu XM, Hai Y (2011) Dung beetle species composition and decomposition function in horse dung in desert steppe of Inner Mongolia. Chinese Journal of Ecology, 30, 2269-2276. (in Chinese with English abstract)
[15] [ 刘新民, 海英 (2011) 荒漠草原马粪中粪金龟子组成及分解作用. 生态学杂志, 30, 2269-2276.]
[16] Manning P, Slade EM, Beynon SA, Lewis OT (2016) Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agriculture, Ecosystems & Environment, 218, 87-94.
[17] Menéndez R, Webb P, Orwin KH (2016) Complementarity of dung beetle species with different functional behaviours influence dung-soil carbon cycling. Soil Biology and Biochemistry, 92, 142-148.
[18] Miloti? T, Quidé S, Van Loo T, Hoffmann M (2017) Linking functional group richness and ecosystem functions of dung beetles: An experimental quantification. Oecologia, 183, 177-190.
[19] Moorhead DL, Sinsabaugh RL (2000) Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Applied Soil Ecology, 14, 71-79.
[20] Mroczyński R, Komosiński K (2014) Differences between beetle communities colonizing cattle and horse dung. European Journal of Entomology, 111, 349-355.
[21] Nervo B, Caprio E, Celi L, Lonati M, Lombardi G, Falsone G, Iussig G, Palestrini C, Said-Pullicino D, Rolando A (2017) Ecological functions provided by dung beetles are interlinked across space and time: Evidence from 15N isotope tracing. Ecology, 98, 433-446.
[22] Piccini I, Arnieri F, Caprio E, Nervo B, Pelissetti S, Palestrini C, Roslin T, Rolando A (2017) Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition. PLoS ONE, 12, e0178077.
[23] Shao YH, Zhang WX, Liu SJ, Wang XL, Fu SL (2015) Diversity and function of soil fauna. Acta Ecologica Sinica, 35, 6614-6625. (in Chinese with English abstract)
[23] [ 邵元虎, 张卫信, 刘胜杰, 王晓丽, 傅声雷 (2015) 土壤动物多样性及其生态功能. 生态学报, 35, 6614-6625.]
[24] Sitters J, Maechler MJ, Edwards PJ, Suter W, Venterink HO (2014) Interactions between C : N : P stoichiometry and soil macrofauna control dung decomposition of savanna herbivores. Functional Ecology, 28, 776-786.
[25] Slade EM, Roslin T, Santalahti M, Bell T (2016) Disentangling the ‘brown world’ faecal-detritus interaction web: Dung beetle effects on soil microbial properties. Oikos, 125, 629-635.
[26] van Klink R, van der Plas F, WallisDeVries MF, Olff H (2015) Effects of large herbivores on grassland arthropod diversity. Biological Reviews, 90, 347-366.
[27] Veldhuis MP, Gommers MI, Olff H, Berg MP (2018) Spatial redistribution of nutrients by large herbivores and dung beetles in a savanna ecosystem. Journal of Ecology, 106, 422-433.
[28] Wall DH, Bradford MA, St. John MG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny L, Lin KC, Maryati M, Masse D, Pokarzhevskii A, Rahman H, Sabará MG, Salamon JA, Swift MJ, Varela A, Vasconcelos HL, White D, Zou XM (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate- dependent. Global Change Biology, 14, 2661-2677.
[29] Wang JZ, Wang DL, Li CQ, Seastedt TR, Liang CZ, Wang L, Sun W, Liang MW, Li Y (2018) Feces nitrogen release induced by different large herbivores in a dry grassland. Ecological Applications, 28, 201-211.
[30] Wang XY, Li FY, Wang YN, Liu XM, Cheng JW, Zhang JZ, Baoyin T, Bardgett RD (2020) High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland. Plant and Soil, 448, 265-276.
[31] Wang YN, Li FY, Song X, Wang XS, Suri GG, Baoyin T (2020) Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: Soil moisture, not home-field advantage, plays a dominant role. Agriculture, Ecosystems & Environment, 303, 107119.
[32] Wardle DA, Bardgett RD, Klironomos JN, Set?l? H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
[33] Wu XW, Duffy J, Reich P, Sun SC (2011) A brown-world cascade in the dung decomposer food web of an alpine meadow: Effects of predator interactions and warming. Ecological Monographs, 81, 313-328.
[34] Wu XW, Griffin JN, Sun SC (2014) Cascading effects of predator-detritivore interactions depend on environmental context in a Tibetan alpine meadow. Journal of Animal Ecology, 83, 546-556.
[35] Wu XW, Li GY, Sun SC (2011) Effect of rainfall regimes on the decomposition rate of yak dung in an alpine meadow of northwest Sichuan Province, China. Acta Ecologica Sinica, 31, 28-36. (in Chinese with English abstract)
[35] [ 吴新卫, 李国勇, 孙书存 (2011) 降水量对川西北高寒草甸牦牛粪分解速率的影响. 生态学报, 31, 28-36.]
[36] Yang XD, Yang Z, Warren M, Chen J (2012) Mechanical fragmentation enhances the contribution of Collembola to leaf litter decomposition. European Journal of Soil Biology, 53, 23-31.
[37] Yin WY (1998) Pictorical Keys to Soil Animals of China. Science Press, Beijing. (in Chinese)
[37] [ 尹文英(1998) 中国土壤动物检索图鉴. 科学出版社, 北京.]
[38] Zhai N, Alatenbagen, Liu XM (2018) Feeding preferences and daily activity rhythms of dung beetles on the Inner Mongolian steppe. Chinese Journal of Applied Entomology, 55, 428-437. (in Chinese with English abstract)
[38] [ 翟娜, 阿拉腾巴根, 刘新民 (2018) 内蒙古典型草原粪食性金龟的取食偏好和日活动节律特征. 应用昆虫学报, 55, 428-437.]
[39] Zhu YH, Merbold L, Leitner S, Pelster DE, Okoma SA, Ngetich F, Onyango AA, Pellikka P, Butterbach-Bahl K (2020) The effects of climate on decomposition of cattle, sheep and goat manure in Kenyan tropical pastures. Plant and Soil, 451, 325-343.
文章导航

/