研究报告: 遗传多样性

基于保护基因组学揭示荷叶铁线蕨的濒危机制

  • 孙维悦 ,
  • 舒江平 ,
  • 顾钰峰 ,
  • 莫日根高娃 ,
  • 杜夏瑾 ,
  • 刘保东 ,
  • 严岳鸿
展开
  • 1.哈尔滨师范大学植物生物学黑龙江省高校重点实验室, 哈尔滨 150025
    2.深圳市兰科植物保护研究中心, 广东深圳 518114
    3.中国科学院华南植物园, 广州 510650
    4.中国科学院上海辰山植物科学研究中心, 上海 201602

收稿日期: 2021-12-09

  录用日期: 2022-04-09

  网络出版日期: 2022-06-21

基金资助

生态环境部生物多样性调查与评估项目(2019HJ2096001006)

Conservation genomics analysis revealed the endangered mechanism of Adiantum nelumboides

  • Weiyue Sun ,
  • Jiangping Shu ,
  • Yufeng Gu ,
  • Morigengaowa ,
  • Xiajin Du ,
  • Baodong Liu ,
  • Yuehong Yan
Expand
  • 1. Key Laboratory of Plant Biology, College of Heilongjiang Province, Harbin Normal University, Harbin 150025
    2. The Orchid Conservation and Research Centre of Shenzhen, Shenzhen, Guangdong 518114
    3. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650
    4. Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602

Received date: 2021-12-09

  Accepted date: 2022-04-09

  Online published: 2022-06-21

摘要

理解物种的濒危机制对生物多样性的科学保护至关重要。荷叶铁线蕨(Adiantum nelumboides)作为国家一级重点保护野生植物, 其遗传多样性状况和濒危机制一直存在较大争议。本文利用简化基因组测序技术(genotyping by sequencing, GBS)对来自6个居群的28个荷叶铁线蕨样本测序, 共获得29.6 Gb的数据, 并筛选得到9,423个高质量单核苷酸变异位点(SNP), 通过遗传多样性和居群遗传结构分析, 并结合不同气候情景下物种潜在分布区差异, 探讨了荷叶铁线蕨的濒危原因和科学保护策略。结果表明: (1)荷叶铁线蕨具有较低的遗传多样性(Ho = 0.138、He = 0.232、Pi = 0.373), 同时种群间具有较低的遗传分化(Fst = 0.0202)和基因流(Nm = 1.9613); (2)所有样本均来自2个遗传分组, 基因组大小为 5.01‒5.83 Gb, 且均为四倍体, GC含量约为 39%‒41%; (3)生态位模拟表明, 与现代气候相比, 在未来气候变化下荷叶铁线蕨的潜在分布区面积略有增加, 但高适生区面积减小。其主要适生区向北迁移, 影响其分布的主导因子为昼夜温差月均值和最冷季降水量。正是由于荷叶铁线蕨遗传多样性低, 不同种群间遗传分化较低, 再加上气候条件的变化, 其适生区狭窄, 导致其遗传多样性和种群数量急剧下降。因此, 自身更新能力低以及过度的人为活动干扰可能是导致其濒危的主要原因。建议加强对荷叶铁线蕨的就地保护; 通过生境恢复及自然回归等措施, 增加居群间的基因交流, 防止遗传资源丢失加剧。

本文引用格式

孙维悦 , 舒江平 , 顾钰峰 , 莫日根高娃 , 杜夏瑾 , 刘保东 , 严岳鸿 . 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022 , 30(7) : 21508 . DOI: 10.17520/biods.2021508

Abstract

Aims: Understanding the mechanism that leads species to endangerment is crucial to the conservation of biodiversity. Adiantum nelumboides is a key wild plant that is protected at the national level, and its genetic diversity and endangerment mechanism are controversial.
Methods: A total of 28 A. nelumboides samples, from six populations, were used to obtain single-nucleotide variation sites (SNP) by the genotyping by sequencing (GBS) method. The genetic diversity and structure of the population were analyzed and combined with the change in the potential distribution area of species under different climate scenarios. Then the possible causes of endangerment and scientific protection strategies of A. nelumboides were discussed.
Results: The results showed that 29.6 Gb of data was obtained based on the GBS sequencing, and 9,423 high-quality SNP loci were screened. Adiantum nelumboides had low genetic diversity (Ho = 0.138, He = 0.232, Pi = 0.373), low genetic differentiation (Fst = 0.0202) and gene flow (Nm = 1.9613). The A. nelumboides samples are from two ancestral haplotypes, their genome size was 5.01‒5.83 Gb, they were tetraploid, and the GC content was about 39%‒41%. Under future climate change, the potential distribution area of A. nelumboides will increase slightly, in which the area of high fitness is lost. The primary areas that are suitable for the plant are distributed in Wanzhou, Chongqing and further north. The dominant factors affecting its distribution are monthly mean differences in diurnal temperatures and precipitation during the coldest season.
Conclusions: Due to the low genetic diversity, lack of gene exchange between different populations, and changes in climatic conditions, suitable growth areas for A. nelumboides become narrow, resulting in a sharp decline in species diversity and population size. Therefore, their low regeneration ability and excessive disturbance from human activities might be the main reasons for the endangered status of A. nelumboides. It was recommended to strengthen in situ conservation of A. nelumboides. Measures such as habitat restoration and natural regression must be discussed to increase gene exchange across populations. At the same time, a core germplasm of this species must be constructed to prevent the aggravation of genetic resource loss.

参考文献

[1] Chen JM, Wang JY, Liu X, Zhang YW, Wang QF (2004) RAPD analysis for genetic diversity of Isoetes sinensis. Biodiversity Science, 12, 348-353. (in Chinese with English abstract)
[1] [ 陈进明, 王晶苑, 刘星, 张彦文, 王青锋 (2004) 中华水韭遗传多样性的RAPD分析. 生物多样性, 12, 348-353.]
[2] Chen SC (2014) Research progress on the national rare and endangered medicinal plant of Adiantum reniforme L. var. sinence in the Three Gorges Reservoir Region. Chinese Journal of Information on Traditional Chinese Medicine, 21, 129-133. (in Chinese)
[2] [ 陈绍成 (2014) 三峡库区国家珍稀濒危药用植物荷叶铁线蕨研究进展. 中国中医药信息杂志, 21, 129-133.]
[3] Cires E, Samain MS, Goetghebeur P, Prieto JAF (2011) Genetic structure in peripheral Western European populations of the endangered species Cochlearia pyrenaica (Brassicaceae). Plant Systematics and Evolution, 297, 75-85.
[4] Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science, 3, 432-438.
[5] Dong SY, Zuo ZY, Yan YH, Xiang JY (2017) Red list assessment of lycophytes and ferns in China. Biodiversity Science, 25, 765-773. (in Chinese with English abstract)
[5] [ 董仕勇, 左政裕, 严岳鸿, 向建英 (2017) 中国石松类和蕨类植物的红色名录评估. 生物多样性, 25, 765-773.]
[6] Fu LK, Jin JM (1992) China Plant Red Data Book (Vol. 1):Rare and Endangered Plants. Science Press, Beijing. (in Chinese and in English published in 1991 and 1992 respectively)
[6] [ 傅立国, 金鉴明 (1991) 中国植物红皮书: 稀有濒危植物(第一册). 科学出版社, 北京.]
[7] Fu YB, Cheng BF, Peterson GW (2014) Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genetic Resources and Crop Evolution, 61, 579-594.
[8] Ge XJ, Zhang LB, Yuan YM, Hao G, Chiang TY (2005) Strong genetic differentiation of the East-Himalayan Megacodon stylophorus (Gentianaceae) detected by inter-simple sequence repeats (ISSR). Biodiversity & Conservation, 14, 849-861.
[9] Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. American Journal of Botany, 87, 783-792.
[10] Godt MJW, Hamrick JL (1991) Genetic variation in Lathyrus latifolius (Leguminosae). American Journal of Botany, 78, 1163-1171.
[11] Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913.
[12] Hogbin PM, Peakall R (1999) Evaluation of the contribution of genetic research to the management of the endangered plant Zieria prostrata. Conservation Biology, 13, 514-522.
[13] Holder K, Montgomerie R, Friesen VL (1999) A test of the glacial refugium hypothesis using patterns of mitochondrial and nuclear DNA sequence variation in rock ptarmigan(Lagopus mutus). Evolution, 53, 1936-1950.
[14] Huang ZH (2020) The research progress of endangered causes and protection strategy of rare and endangered plants in China. Journal of University of South China (Science and Technology), 34(3), 42-50. (in Chinese with English abstract)
[14] [ 黄至欢 (2020) 中国珍稀植物濒危原因及保护对策研究进展. 南华大学学报(自然科学版), 34(3), 42-50.]
[15] Huenneke LF (1991) Ecological implications of genetic variation in plant populations. In: Genetics and Conservation of Rare Plants (eds Falk DA, Holsinger KE), pp. 31-44. Oxford University Press. New York.
[16] IUCN International Union for Conservation of Nature(2010) IUCN Red List of Threatened Species. http://www.iucnredlist.org. (accessed on 2021-11-18)
[17] Li A, Ge S (2002) Advances in plant conservation genetics. Biodiversity Science, 10, 61-71. (in Chinese with English abstract)
[17] [ 李昂, 葛颂 (2002) 植物保护遗传学研究进展. 生物多样性, 10, 61-71.]
[18] Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589-595.
[19] Li JW, Yang QJ, Liu XQ, Ji H, Zhang ZW (2014) Genetic diversity of Taiwania cryptomerioides detected by ISSR analysis. Scientia Silvae Sinicae, 50(6), 61-66. (in Chinese with English abstract)
[19] [ 李江伟, 杨琴军, 刘秀群, 季华, 张卓文 (2014) 台湾杉遗传多样性的ISSR分析. 林业科学, 50(6), 61-66.]
[20] Li LL, Zhou YF, Xu M, Li MM, Xu ZL (2021) Analysis of SSR loci information in the transcriptome of Glehnia littoralis. Molecular Plant Breeding, 19, 4708-4713. (in Chinese with English abstract)
[20] [ 李玲丽, 周义峰, 徐明, 李密密, 徐增莱 (2021) 珊瑚菜转录组的SSR位点信息分析. 分子植物育种, 19, 4708-4713.]
[21] Liao KF, Hu C, Hu XJ, Zhang JY, Wang MN, Wang KL, Wei BJ, Xiao ZP (2021) A study on plant diversity evaluation in Danxia Wutong Nature Reserve in Nanxiong City. Ecological Science, 40, 156-164. (in Chinese with English abstract)
[21] [ 廖坤富, 胡纯, 胡希军, 张九月, 王梦楠, 王凯丽, 韦宝婧, 肖志鹏 (2021) 广东南雄丹霞梧桐自然保护区植物多样性评价. 生态科学, 40, 156-164.]
[22] Liu ZL, Zhao LY, Zhu XQ (2010) The current study situation of Chinese biodiversity and its protective planning development. Chinese Landscape Architecture, 26, 81-83. (in Chinese with English abstract)
[22] [ 刘张璐, 赵兰勇, 朱秀芹 (2010) 中国生物多样性及其保护规划发展研究现状. 中国园林, 26, 81-83.]
[23] Ma KP, Qian YQ (1998) Biodiversity conservation and its research progress. Chinese Journal of Applied and Environmental Biology, 4, 95-99. (in Chinese with English abstract)
[23] [ 马克平, 钱迎倩 (1998) 生物多样性保护及其研究进展. 应用与环境生物学报, 4, 95-99.]
[24] Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17, 240-248.
[25] Pan LQ, Ji H, Chen LQ (2005) Genetic diversity of the natural populations of Adiantum reniforme var. sinense. Biodiversity Science, 13, 122-129. (in Chinese with English abstract)
[25] [ 潘丽芹, 季华, 陈龙清 (2005) 荷叶铁线蕨自然居群的遗传多样性研究. 生物多样性, 13, 122-129.]
[26] Pegadaraju V, Nipper R, Hulke B, Qi LL, Schultz Q (2013) De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach. BMC Genomics, 14, 556.
[27] Ran Q, Wei HY, Zhao ZF, Zhang QZ, Liu J, Gu W (2019) Impact of climate change on the potential distribution and habitat fragmentation of the relict plant Cathaya argyrophylla Chun et Kuang. Acta Ecologica Sinica, 39, 2481-2493. (in Chinese with English abstract)
[27] [ 冉巧, 卫海燕, 赵泽芳, 张权中, 刘静, 顾蔚 (2019) 气候变化对孑遗植物银杉的潜在分布及生境破碎度的影响. 生态学报, 39, 2481-2493.]
[28] Reid WV, Laird SA, Meyer CA, Gamez R, Juma CWRI (1993) Biodiversity Prospecting:Using Genetic Resources for Sustainable Development. World Resources Institute (WRI), New York.
[29] Shen ZH, Jin YX, Wu JQ, Zhao ZE (1999) An contrast on the characteristics of soil in the natural habitat and resite reserve of two endemic species of the Three Gorges reservoir region of Yangzi River. Journal of Wuhan Botanical Research, 17, 46-52. (in Chinese with English abstract)
[29] [ 沈泽昊, 金义兴, 吴金清, 赵子恩 (1999) 三峡库区两种特有植物天然生境与迁地生境土壤特征的比较. 武汉植物学研究, 17, 46-52.]
[30] Solomon AM, Han K, Lee JH, Lee HY, Jang S, Kang BC (2019) Genetic diversity and population structure of Ethiopian Capsicum germplasms. PLoS ONE, 14, e0216886.
[31] Su JY, Yan Y, Li C, Li D, Du FK (2020) Informing conservation strategies with genetic diversity in Wild Plant with Extremely Small Populations: A review on gymnosperms. Biodiversity Science, 28, 376-384. (in Chinese with English abstract)
[31] [ 苏金源, 燕语, 李冲, 李丹, 杜芳 (2020) 通过遗传多样性探讨极小种群野生植物的致濒机理及保护策略: 以裸子植物为例. 生物多样性, 28, 376-384.]
[32] Tang CQ, Matsui T, Ohashi H, Dong YF, Momohara A, Herrando-Moraira S, Qian SH, Yang YC, Ohsawa M, Luu HT, Grote PJ, Krestov PV, LePage B, Werger M, Robertson K, Hobohm C, Wang CY, Peng MC, Chen X, Wang HC, Su WH, Zhou R, Li SF, He LY, Yan K, Zhu MY, Hu J, Yang RH, Li WJ, Tomita M, Wu ZL, Yan HZ, Zhang GF, He H, Yi SR, Gong HD, Song K, Song D, Li XS, Zhang ZY, Han PB, Shen LQ, Huang DS, Luo K, López-Pujol J (2018) Identifying long-term stable refugia for relict plant species in East Asia. Nature Communications, 9, 4488.
[33] Tingley R, Vallinoto M, Sequeira F, Kearney MR (2014) Realized niche shift during a global biological invasion. Proceedings of the National Academy of Sciences, USA, 111, 10233-10238.
[34] Wang AH, Sun Y, Schneider H, Zhai JW, Liu DM, Zhou JS, Xing FW, Chen HF, Wang FG (2015) Identification of the relationship between Chinese Adiantum reniforme var. sinense and canary Adiantum reniforme. BMC Plant Biology, 15, 36.
[35] Wang WC, Chen SY, Zhang XZ (2017) The complete chloroplast genome of the endangered Chinese paperbark maple, Acer griseum (Sapindaceae). Conservation Genetics Resources, 9, 527-529.
[36] Wu JG, Huang JH, Han XG, Xie ZQ, Gao XM (2003) Three-Gorges Dam-Experiment in habitat fragmentation? Science, 300, 1239-1240.
[37] Yu SH, Ran G, Jiang XM, Deng HP, Zhou XC (2013) Study on accompanying vascular plants of Adiantum reniforme var. sinense community in Three Gorges Reservoir area. Guangdong Agricultural Sciences, 40, 145-147. (in Chinese with English abstract)
[37] [ 余顺慧, 冉谷, 蒋雪梅, 邓洪平, 周兴成 (2013) 三峡库区珍稀濒危植物荷叶铁线蕨群落伴生维管植物研究. 广东农业科学, 40, 145-147.]
文章导航

/