生物多样性 ›› 2018, Vol. 26 ›› Issue (9): 988-997.  DOI: 10.17520/biods.2018127

• 综述 • 上一篇    下一篇

植物叶缘形态的发育调控机理

柯锦秀, 陈多, 郭延平*()   

  1. 生物多样性与生态工程教育部重点实验室, 北京师范大学生命科学学院, 北京 100875
  • 收稿日期:2018-04-26 接受日期:2018-06-17 出版日期:2018-09-20 发布日期:2019-01-05
  • 通讯作者: 郭延平
  • 作者简介:# 共同第一作者
  • 基金资助:
    国家自然科学基金(31570215)

Designing leaf marginal shapes: Regulatory mechanisms of leaf serration or dissection

Jinxiu Ke, Duo Chen, Yanping Guo*()   

  1. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and College of Life Sciences, Beijing Normal University, Beijing 100875
  • Received:2018-04-26 Accepted:2018-06-17 Online:2018-09-20 Published:2019-01-05
  • Contact: Guo Yanping
  • About author:# Co-first authors

摘要:

生物多样性研究的关键问题之一是表型多样性的形成和演化机制, 因为表型多样性与物种多样性密切相关, 同时又承载着遗传和环境的变异信息。植物的叶具有丰富的形态多样性, 而叶形多样性很大程度上体现在叶边缘形态的变异。叶边缘的形态可从全缘、锯齿状到具有不同程度(深浅)和不同式样(羽状或掌状、回数等)的裂片(在发育研究中复叶的小叶也描述为裂片)。关于叶缘齿/裂的发育调控机制, 在拟南芥(Arabidopsis thaliana)、碎米荠(Cardamine hirsuta)、番茄(Solanum lycopersicum)等模式植物中已有较深入的探讨。研究发现, 很多转录因子、小分子RNA及植物激素对叶齿/裂或小叶的形成具有调控作用, 其中生长素输出途径中的转录因子NAM/CUC、miR164以及高浓度生长素的反馈调控可能起到核心作用, 而且该调控模块在真双子叶植物中较为保守; TCP类、SPL类转录因子和其他一些miRNA也在生长素输出途径中发挥作用; 关于KNOX家族转录因子的作用, 虽然多数研究是围绕复叶的形态建成, 但也有数据显示其在叶裂发育中发挥作用。此外, 对拟南芥和碎米荠等十字花科植物的研究还发现, 调控基因RCO通过抑制小叶/裂片之间的细胞增殖而对小叶/叶裂的发育发挥作用。本文综述上述多角度的研究进展, 并尝试概括叶边缘形态的发育调控网络, 为关于叶缘形态多样性形成机制的研究提供可参考的切入点。

关键词: 叶缘齿/裂, 形态发生, 演化发育, 调控网络

Abstract

The mechanism of formation and evolution of phenotypic diversity is one of the key problems in biodiversity science because phenotype diversity is not only a marker of species diversity, but carries the designs adjusted to environments. Plant leaves exhibit a great deal of morphological variation. Such variation is attributed largely to changes of leaf marginal architecture. Leaf marginal shapes can be described as entire, serrate, lobed (varying in depth and patterns) and dissected (also referred to as compound leaf). The molecular mechanism controlling the development of leaf marginal shape has been intensively studied in Arabidopsis thaliana, Cardamine hirsuta, Solanum lycopersicum, and some other plants. Many important regulatory factors such as transcription factors, small RNAs and plant hormones have been found involved in the development of leaf serration or dissection. Among those factors, the transcription factor NAM/CUC, miR164 and auxin in the auxin efflux module play a central role through a feedback loop, and this regulatory module appears to be conserved across the eudicots; the transcription factors TCPs, SPLs and some other miRNAs also take part in the auxin efflux pathway. Transcription factors of the KNOX family play roles in the development of leaf lobes as well although most of the researches about KNOX genes have focused on their regulation of the morphogenesis of compound leaves. In addition, studies in Arabidopsis, Cardamine and other taxa of the Brassicaceae have shown that the gene RCO promotes the development of leaf dissection by repressing growth at the flanks of protrusions generated by CUC-auxin patterning. The present paper reviews the recent progress and integrate the major results of researches about the molecular mechanisms that underlie leaf serration or dissection. We hope this may provide reference for unraveling the morphogenetic origin of the spectacular diversity of leaf marginal shapes.

Key words: leaf serration/dissection, morphogenesis, evolutionary development, regulatory network