生物多样性, 2019, 27(2): 140-148 doi: 10.17520/biods.2018232

研究报告

基于本土最优模型模拟入侵物种水盾草在中国的潜在分布

范靖宇, 李汉芃, 杨琢, 朱耿平*

天津师范大学生命科学学院, 天津 300387

Selecting the best native individual model to predict potential distribution of Cabomba caroliniana in China

Jingyu Fan, Li Hanpeng, Yang Zhuo, Zhu Gengping*

College of Life Sciences, Tianjin Normal University, Tianjin 300387

通讯作者: * E-mail: gengpingzhu@hotmail.com

编委: 丁建清

责任编辑: 闫文杰

收稿日期: 2018-08-31   接受日期: 2018-12-8   网络出版日期: 2019-02-20

基金资助: 国家自然科学基金(31401962)
国家自然科学基金(31870523)

Received: 2018-08-31   Accepted: 2018-12-8   Online: 2019-02-20

摘要

生态位模型预测存在不确定性, 不同模型预测结果差别较大。在生态位保守的前提下, 在本土区域构建经典生态位模型, 利用入侵地独立样本数据检验并选择最优模型, 具有独特优势, 可为入侵物种风险分析提供可靠参考。水盾草(Cabomba caroliniana)是一种恶性水生入侵杂草, 原产于南美洲, 已在我国多个省市建立种群, 本文基于本土最优模型预测其在我国的潜在分布, 以期为其风险分析和综合治理提供依据, 并通过水盾草案例探讨如何提高生态位模型预测准确性的方法。本文按时间顺序梳理了水盾草在我国的分布记录, 然后根据水盾草已有分布记录和其所关联的环境因子比较了不同地理种群所占有的气候生态空间, 测试水盾草在世界入侵过程中的现实生态位保守性。采用两组环境变量和5种算法在南美洲本土地区构建10种生态位模型, 并将其转移至我国, 基于最小遗漏率和记账错率, 利用我国(入侵地)的样本数据选择最优模型预测水盾草在我国的适宜生态空间和潜在分布。研究发现当前水盾草在我国的分布集中在东部水域充沛地区, 沿京杭运河和南水北调工程等向北扩散。生态空间比对中发现水盾草在亚洲与其他大洲所占有的生态空间具有一定的重叠, 其在我国的入侵过程中生态位是保守的。与本土空间相比, 水盾草在我国所占有的生态空间存在较大的生态位空缺, 表明水盾草在我国的潜在分布范围较大。生态位模型预测显示水盾草的适生区主要分布于我国的北京、上海、山东、浙江、江苏、安徽、湖北和湖南等省(市)。水盾草的潜在分布区多聚集在我国东南部, 该地区河流、湖泊、运河和渠道较为密集, 人类活动及自然天敌的缺乏容易助长其入侵趋势, 应在这些适宜地区开展调查, 及时发现疫情并采取相应措施。

关键词: 生态位模型 ; 最优模型 ; 水盾草 ; 潜在分布 ; 中国

Abstract

Uncertainty is inherent in ecological niche model predictions and different models yield different predictions. Based on the niche conservatism hypothesis, classic niche models that are calibrated on native areas and transferred to introduced areas for evaluation and prediction have advantages. Cabomba caroliniana is a notorious invasive aquatic weed native to South America that has established populations in China. In this study, independent testing points from China were used to validate and select the best individual model to predict the potential distribution, offering reliable and valuable information for risk analyses of C. caroliniana. The distributional records of C. caroliniana in China were sorted in chronological order, and climate niche dynamics and niche conservatism of C. caroliniana invasions across major continents were investigated using environmental variables associated with observed records. A total of 10 models were then calibrated in native area using two environmental datasets and five model algorithms. The best individual model was used to predict distribution, which was tested and selected based on the criteria of low omission and commission errors of independent introduced points. Results showed that present distribution of C. caroliniana occurs mainly along the eastern coastal areas of China. It has also dispersed northward in rivers and lakes system along Beijing-Hangzhou Grand Canal or South-to-North water diversions. The climate conditions occupied by different continental populations overlap broadly suggesting its climate niche was conserved during the invasion in China. There were many climate spaces that were unfilled when compared to its native niche spaces, suggesting a high invasion potential in these areas. Areas of potential distributions identified by best native individual model include Beijing, Shanghai, Shandong, Zhejiang, Jiangsu, Anhui, Hubei and Hunan provinces. These potential areas were mainly distributed in the southeastern rivers, lakes, canals and channels all with high human activity and no effective natural enemy, which could assist C. caroliniana expansion. Our research demonstrates the need for rigorous surveys in these areas, together with an integrative management action to control further expansion of C. caroliniana.

Keywords: ecological niche model ; fine-tuned model ; Cabomba caroliniana ; potential distribution ; China

PDF (6063KB) 摘要页面 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

引用本文

范靖宇, 李汉芃, 杨琢, 朱耿平. 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布. 生物多样性, 2019, 27(2): 140-148 doi:10.17520/biods.2018232

Jingyu Fan. Selecting the best native individual model to predict potential distribution of Cabomba caroliniana in China. Biodiversity Science, 2019, 27(2): 140-148 doi:10.17520/biods.2018232

随着全球贸易的增强, 生物入侵现象屡见不鲜, 越来越多的物种在其本土分布地之外建立种群, 危及当地物种群落组成和生物多样性, 影响农业生产并造成巨大经济损失(徐承远等, 2001)。与陆生入侵物种不同, 水生入侵杂草的自然天敌较少, 其定殖和扩张在水域生态系统受到的限制较小, 种群一旦建立, 将不受限制迅速蔓延(丁炳扬等, 2007)。入侵种群暴发后很难根除, 会对生态系统和经济发展造成不可估量的危害和损失。对入侵物种的潜在分布进行预测是进行风险分析和综合治理的重要依据, 准确地模拟入侵物种的潜在分布, 不仅能为有效地阻断其种群扩散和风险分析提供参考, 同时可为其综合治理提供依据(Uden et al, 2015)。生态位模型是利用物种已知的分布数据和相关环境变量, 根据一定的算法来推算物种的生态需求, 然后将运算结果投射至不同的空间和时间中来预测物种的实际分布和潜在分布, 被越来越多地应用在入侵物种风险评估中(朱耿平等, 2013, 2014)。

在模拟入侵物种潜在分布区的分析中, 生态位模型有两种构建方案, 即本土模型方案和全球模型方案, 前者在入侵物种本土区域构建模型然后将其转移至入侵地来预测其潜在分布, 是一种经典的模型构建方案; 后者整合本土和入侵地分布点在全球区域构建模型, 这两种模型构建方案各有优劣(Peterson & Soberón, 2012; 朱耿平等, 2013, 2014)。本土模型构建于本土种群平衡状态的基础上, 即物种已在所有适合其生存的区域建立种群并达到平衡状态(equilibrium state)(Evans et al, 2007; Živković & Stephan, 2011), 使用入侵地分布点作为独立样本数据评估模型转移能力, 能够对入侵物种的潜在分布进行全面分析, 但在转移至入侵地应用时会出现模型转移能力低(low transferrability)和生态空间溢出问题(none analogue)。全球模型虽然能够克服转移能力低和生态空间溢出问题, 但它是建立在种群非平衡状态的基础上, 缺乏独立样本检测数据, 预测结果集中在已有物种分布点周围, 不能对物种的潜在分布进行分析, 模拟结果不具有风险分析的价值(Tingley et al, 2016; Zhu et al, 2017)。

经典生态位模型在模拟入侵物种的潜在分布时, 出现了模型的转移能力较低、模拟的结果与物种的实际分布不相符的情况, 由此得出了生态位漂移等不恰当的结论。因此, 在生态位保守的前提下, 提高生态位模型的转移能力就显得十分重要(朱耿平等, 2014)。然而模型的转移能力受物种特性和模型本身等多种因素的复杂影响(朱耿平等, 2014; Yates et al, 2018), 不同模型算法的转移能力具有差异, 同一种模型在不同场景中其转移能力也是不一致的(Qiao et al, 2018), 需要加强对生态位预测起决定性因素的研究(Peterson et al, 2018)。综上, 在模拟入侵物种分布时, 经典模型对本土区域的预测能力和在入侵地的转移能力应该区别对待, 尽量选取在入侵地转移能力强的本土模型来进行风险分析。

与其他生态模型类似, 生态位模型预测存在不确定性, 这种不确定性源自物种分布点、环境变量的选择、模型算法、模型参数设置和模型构建区域的界定等(Peterson & Soberón, 2012)。国际上通常采用集合预测(ensemble forecasting)的方法来降低单一模型预测的不确定性, 整合模型(即集合预测)基于不同算法(如中间值和加权平均值等)来归纳和总结单一模型的预测, 以期提高物种分布预测的可靠性(Breiner et al, 2015)。然而整合模型虽然能够降低单一模型预测的不确定性, 反映单一模型预测的中心趋势(central tendency), 但不能替代单一模型; 整合模型的预测效果会优于一些表现较差的单一模型, 但逊于一些表现较好的单一模型(Zhu & Peterson, 2017)。在具有独立样本数据的条件下, 基于独立样本数据测试结果可以选择最优的单一模型来进行入侵物种潜在分布分析; 在缺乏独立样本测试数据时, 可通过集合预测降低模型预测的不确定性。

水盾草(Cabomba caroliniana), 别名绿菊花草(沈脂红, 2000), 属莼菜科, 是一种原产南美东部的水生植物, 主要生存于平原地带的河流、湖泊、运河和渠道中(丁炳扬等, 2003)。该杂草生长迅速, 对水质要求不高, 以断枝等方式进行无性繁殖和扩张, 繁殖能力较强, 每一个节位在适宜的条件下均能发育成完整的植株。当前水盾草主要分布于中国浙江北部、江苏南部和上海西部等地, 在局部水域已成为优势种, 并有进一步扩散的趋势(张群, 2012)。其大面积发生可导致航道和灌溉渠道堵塞, 影响入侵地的水生生态系统、渔业和旅游业发展(丁炳扬等, 2007)。水盾草的入侵和扩散对我国国民经济和生态系统的潜在威胁不可低估, 2016年原环境保护部将水盾草列入《中国自然生态系统外来入侵物种名单(第四批)》。

本文以水盾草为案例探讨本土模型和全球模型、单一模型和整合模型的优劣, 以及如何选择和利用最优单一模型来模拟入侵物种的潜在分布, 促进生态位模型在入侵物种风险分析中的合理运用。

1 材料与方法

1.1 数据来源

水盾草的分布点源于全球生物多样性信息网络(Global Biodiversity Information Facility, GBIF)以及国内外相关文献, 这些分布点集中在北美洲、南美洲、欧洲西侧、澳洲和亚洲东南部。为降低采样偏差对生态位模型模拟的影响, 按照所选取的环境变量的空间分辨率(5')进行样本点重采样, 共计整理出728个水盾草分布点, 其中原产地分布点79个, 中国分布点41个。在我国分布数据的整理过程中, 本文按时间顺序梳理了水盾草在中国的分布记录, 以期探讨其在我国的扩张趋势和动态。

以WorldClim数据中心(v2.0, Hijmans et al, 2005) 19种生物气候数据为基础, 选取两组环境变量(A组和B组)。首先去除温度和降水偶联的环境变量(即Bio8和Bio9, Bio18和Bio19), 将剩余15个变量在MaxEnt模型中运用刀切法(Jackknife test)进行重要性排序, 并结合SDMtoolbox (Brown, 2014)进行相关性测试, 筛选环境变量, 最终A组和B组各选取7个气候变量(Pearson相关性值< 0.9)。A组环境变量: Bio2 (昼夜温差月均值)、Bio3 (等温性)、Bio10 (最热季节平均温度)、Bio11 (最冷季节平均温度)、Bio15 (降水季节变异系数)、Bio16 (最湿季节降水量)、Bio18 (最暖季节降水量)、Bio19 (最冷季节降水量)。B组环境变量: 依据水盾草生活习性(丁炳扬等, 2003), 选择反映极端和年平均值的环境变量组合, 即Bio1 (年均温)、Bio5 (最热月最高温度)、Bio6 (最冷月最低温度)、Bio12 (年均降水量)、Bio13 (最湿月降水量)、Bio14 (最干月降水量)、Bio15 (降水季节变异系数)。基于5'的分辨率的A组和B组环境变量分别进行生态空间对比和模型构建。

1.2 生态空间对比

主成分分析可以降低空间环境变量的维度, 分析各环境变量对地理分布的限制作用, 并对各地理种群所占有的生态空间进行比较分析(Soberón & Nakamura, 2009)。在NicheA (v3.0, Qiao et al, 2016)中, 利用主成分分析拟合物种分布点所关联的环境变量, 模拟物种的生态位, 对水盾草在世界5个地理区域(北美洲、南美洲、欧洲西侧、澳洲和亚洲东南部)的物种分布点所占的气候空间进行对比。基于各大洲的物种分布点构建最小凸多边形(minimum convex polygon, MCP), 然后对MCP做400 km缓冲处理, 用于空间比对及模型构建和评估。基于生态位等价性和相似性测试(Warren et al, 2018), 测试水盾草在我国及世界各地入侵过程中的生态位保守性, 即物种入侵过程中生态位是否发生了分化。前者用于测试和比较不同地理种群之间是否占有相同的生态位(相似性或差异性), 后者则是用来测试这种相似性或差异性是否来自于地理环境。地理种群间生态空间的重叠程度采用Schoener的D值衡量, 其值介于0和1之间, “0”表示种群间生态位没有重叠, “1”表示生态位完全重叠(Warren et al, 2018)。Petitpierre等(2012)将空间生态位之间的比较归纳为生态位空缺(unfilling)、生态位稳定区(stability)和生态位扩张(expansion), 其中入侵生态空间和本土生态空间重叠部分为生态位稳定区, 与本土生态空间相比, 入侵生态空间超出的那部分所占的比例为生态扩张, 是真正意义的生态位进化, 而生态位空缺则是指入侵生态位还未能与本土生态位重叠的部分。

1.3 模型构建、评价和选择

首先, 在水盾草的本土分布地, 采用两组环境变量分别构建模型, 再将模型转移至入侵地来评价其转移能力并推算水盾草在世界范围的潜在分布。在本土模型构建中, 随机选取70%的物种分布点和10,000个拟不存在分布点作为训练数据, 剩余30%的数据用于模型的检验和校正。基于两组环境变量, 分别采用5种算法构建本土模型, 即广义相加模型(GAM)、广义增强模型(GBM)、广义线性模型(GLM)、随机森林模型(RF)和最大熵模型(MaxEnt), 这些模型基于R软件Biomod2程序中的默认参数实现(Thuiller, 2003)。本土模型的评价主要采用partial ROC方案(Peterson et al, 2008), 与传统AUC值相比, partial ROC方案具有优越性(朱耿平等, 2017), 它采用AUC比率来评估模型, AUC比率大于1, 表明模型优于随机模型。在入侵地, 模型预测和转移能力的评估依据不同阈值下的遗漏率(omission error)和记账错率(commission error), 在10个模型中以遗漏率最低同时记账错率较低或适中的模型为最优模型, 这种模型选择方案能够最大程度地降低模型预测的遗漏率, 同时避免过度预测(over prediction)。由于本次研究缺失不存在物种分布点数据, 参照Peterson等(2008), 以预测面积占区域面积的比例(proportion of area predicted present)来替代记账错率。

2 结果

2.1 水盾草在我国境内的扩张趋势

通过对各类文献进行检索, 本文发现当前水盾草主要分布于我国的浙江省北部、江苏省南部和北部、山东南部, 以及上海和北京(图1)。1993年在浙江省宁波市东钱湖镇首次发现水盾草(万志刚等, 1999; 丁炳扬, 1999)、1995年在上海淀山湖流域(万志刚等, 1999)、1998年在江苏省吴县太湖乡以及浙江省余姚河姆渡分别发现(万志刚等, 1999; 丁炳扬, 2000), 2000年在上海浦练塘太浦河、江苏省吴江平望以及浙江省的建德梅城等多处水域发现(丁炳扬, 2000; 丁炳扬等, 2003), 2001年在江苏省桃园镇(丁炳扬等, 2003), 2002年在江苏省无锡锡山与宜兴周铁镇等地相继发现(丁炳扬等, 2003), 2005年在广西柳州(董志德等, 2007), 2009年在江苏盐城沿海、太湖、高宝邵泊湖、里下河沼泽湿地等多处发现(何金星等, 2011), 2010年在南四湖水域发现(侯元同等, 2012), 2011年在北京圆明园水域发现(张劲林和孟世勇, 2013)。通过梳理这些分布记录, 推测水盾草最早在我国长江三角洲地区定殖, 然后沿京杭大运河或南水北调途经的淡水水域(河流, 淡水湖泊)向北扩张(图1)。

图1

图1   水盾草在中国的分布记录

Fig. 1   Geographic distributional records of Cabomba caroliniana in China


2.2 生态空间比较及生态位保守性测试

基于两组环境变量的生态空间比较均显示, 水盾草在各大洲所占有的生态空间与其南美洲本土生态空间均有不同程度的重叠, 其中本土种群与亚洲种群所占有的空间重叠较大(图2)。亚洲种群与其余四个洲(北美洲、南美洲、欧洲、澳洲)的生态空间之间亦存在不同程度的重叠, 表明水盾草在各大洲所占有的生态空间不同。与本土种群相比, 水盾草在我国的入侵过程中并未占有所有适合的生态空间, 生态空间显示出空缺及扩张, 种群处于非平衡状态(图2)。

图2

图2   两组环境变量下五个洲水盾草的生态位重叠对比图。左侧: A组环境变量, 包括Bio2, Bio3, Bio10, Bio11, Bio15, Bio16, Bio18和Bio19; 右侧: B组环境变量, 包括Bio1, Bio5, Bio6, Bio12, Bio13, Bio14和Bio15。

Fig. 2   Comparison of climate niche spaces occupied by different populations in five continent. Left: A dataset, including Bio2, Bio3, Bio10, Bio11, Bio15, Bio16, Bio18, and Bio19; Right: B dataset, including Bio1, Bio5, Bio6, Bio12, Bio13, Bio14, and Bio15.


水盾草本土种群生态空间与各入侵种群表现出不同程度重叠(A组环境变量: 澳洲D = 0.46, 亚洲D = 0.17, 南美洲D = 0.48, 欧洲D = 0.10; B组环境变量: 澳洲D = 0.41, 亚洲D = 0.18, 南美洲D = 0.38, 欧洲D = 0.09)。在生态位等价性测试中, 基于两组环境变量的结果均显示水盾草南美洲本土种群与澳洲、北美洲、亚洲等入侵地种群的生态位重叠符合随机重叠的分布(图3), 这说明水盾草在澳洲、北美洲、亚洲的入侵过程中未发生分化, 生态位是保守的。与欧洲种群所占有的生态位不同(等价性测试), 即实际生态位重叠不符合随机生态位重叠的分布, 生态位相似性测试亦支持等价性测试结果(图3), 表明水盾草在欧洲入侵过程中生态位已经发生分化。

图3

图3   基于两组环境变量不同水盾草地理种群的等价性与相似性测试。黑色虚线代表所观察到的实际生态位重叠值, 黑色柱状代表生态位重叠的随机分布频率。左侧: A组环境变量; 右侧: B组环境变量。A组和B组包含的环境变量见图2.

Fig. 3   Histograms of niche equivalency and similarity tests between continental populations based on the two environmental datasets. Black dotted lines represent the observed niche overlap. whereas black bars represent simulated niche overlaps. Left: A dataset; Right: B dataset. Details of dataset A and B refer to Fig. 2.


2.3 潜在分布预测

在本土区域的预测中, 除基于A组环境变量构建的GAM模型外(AUC比率 = 0.75), 其他9种生态位模型均能相对较好地预测水盾草在南美洲的分布(基于A组变量的AUC比率: GBM = 1.84, GLM = 1.02, MaxEnt = 1.84, RF = 1.80; 基于B组变量的AUC比率: GAM = 1.87, GBM = 1.90, GLM = 1.50, MaxEnt = 1.90, RF = 1.83)。在biomod2生成“伪不存在”记录, 重复1,000次后得出AUC (平均值 ± 标准差)值分别为(基于A组变量: GAM = 0.35 ± 0.04, GBM = 0.92 ± 0.06, GLM = 0.51 ± 0.02, MaxEnt = 0.92 ± 0.02, RF = 0.85 ± 0.08; 基于B组变量: GAM = 0.94 ± 0.04, GBM = 0.95 ± 0.06, GLM = 0.75 ± 0.04, MaxEnt = 0.95 ± 0.02, RF = 0.92 ± 0.05)。

基于我国独立样本数据进行遗漏检测的结果表明, 基于两组环境变量的RF模型均能较好且稳定地预测水盾草在我国的潜在分布, 遗漏率较低, 且基于A组环境变量所构建的RF模型的遗漏率低于B组(图4)。在我国的预测中, 基于两组环境变量所构建的GAM模型和GLM模型的遗漏率相对较高,GBM模型和RF模型的遗漏率相对较低, MaxEnt模型介于两组之间(图4)。在记账错率检测中, RF、MaxEnt和GBM模型均未表现出过度预测, 但基于A组环境变量的GLM和GAM模型可能存在过度预测, 即其模型预测物种存在分布的区域占所有区域的比例过高(图4)。

图4

图4   基于两组环境变量构建的本土模型在入侵地(中国)的遗漏率与记账错率比较。左图: A组环境变量, 右图: B组环境变量。A组和B组包含的环境变量见图2.

Fig. 4   Omission and commission error comparisons of native models transferability in China based on the two datasets. Left: A dataset; Right: B dataset. Details of dataset A and B refer to Fig. 2.


我国的预测结果表明, 较之基于A组环境变量所构建的RF模型, 基于B组环境变量所构建的RF模型相对保守(图5)。基于两组环境变量所构建的RF模型均显示水盾草在我国的潜在分布区主要在浙江、江苏、上海、湖北、湖南以及江西等地(图5), 此外在山东、河南、河北以及东部沿海等地也具有一定程度的适生性(图5)。基于A组环境变量所构建的模型还显示福建、广西、广东、重庆、四川东部、海南、台湾东南沿海和广东的雷州半岛具有较高的适生性(图5)。

图5

图5   基于本土随机森林模型对水盾草在我国的潜在分布区预测。左侧: A组环境变量, 右侧: B组环境变量。A组和B组包含的环境变量见图2.

Fig. 5   Potential distributions of Cabomba caroliniana based on the two native random forest models using two environmental datasets. Left: A dataset; Right: B dataset. Details of dataset A and B refer to Fig. 2.


3 讨论

环境变量的选择是模型构建中的重要因素, 对模型的转移能力和生态位保守性测试影响较大(朱耿平等, 2013; Zhu & Peterson, 2017; Fan et al, 2018)。本次研究筛选出两组具有限制性的环境变量, 具有不同的生物学意义和空间相关性, 其中基于B组环境变量构建的本土模型, 在我国和世界其他地区的预测均较为保守, 在不同的阈值条件下, 基于A组环境变量构建的本土模型的遗漏率都低于B组(图4), 但记账错率较大。B组环境变量选取的气候因子的平均值和极端值, 对物种分布的限制性相对较大, 因此基于B组环境变量构建模型的预测相对保守。基于两组环境变量的生态空间比对和生态位保守性测试显示, 水盾草在澳洲、北美洲和亚洲入侵过程中, 生态位是保守的, 但在欧洲入侵过程中生态位发生分化(图3)。与本土生态空间相比, 水盾草在我国的种群显示出生态位空缺, 即其在我国的入侵并未达到饱和, 依然存在入侵的空间, 种群处于扩张和非平衡状态(图2)。

在入侵物种潜在分布模拟中, 我们建议深入分析所模拟物种的生物学特性, 选择多组具有生物学意义的环境变量分别进行模型构建, 同时进行生态空间比对和生态位保守性测试, 从而对模拟结果进行准确地研判。在模型构建中, 本文推荐使用经典本土模型, 经典本土模型在入侵物种风险分析中具有独特的优势, 这是由于本土模型构建于物种的种群平衡状态基础之上, 能够对物种的生态需求和潜在分布进行全面地分析(Peterson & Soberón, 2012)。生态位模型预测存在不确定性, 不同模型差别较大。本土模型在模型构建区域的预测能力和模型的转移能力不具有相关性, 根据模型在本土区域的预测能力选择模型来模拟入侵物种在入侵地的潜在分布是不可取的。在本土区域构建模型后将其转移至入侵地, 基于入侵地独立样本数据测试结果, 选择最优的单一模型来进行入侵物种潜在分布分析, 具有独特优势(Zhu & Peterson, 2017), 能够对物种在入侵地的潜在分布进行合理地分析。

在本研究中, 以遗漏率最低同时记账错率较小或适中的模型为最优模型, 这种模型选择方案能够最大程度地降低模型的遗漏率, 同时避免模型过度预测, 能够较为合理地模拟入侵物种的潜在分布。白艺珍等(2009)利用CLIMEX软件预测出的黄顶菊(Flaveria bidentis)在世界范围及中国的潜在分布, 与Fan等(2018)利用多种模型预测的结果相比, 表现出过度预测, 这主要是由于模型评估和选择时没有充分考虑遗漏率和记账错率, 没有能够权衡分布与不分布, 导致记账错率较大并产生过度预测。本研究基于2组环境变量和5种模型能较好地预测水盾草在南美洲本土种群的分布, 然而当模型转移至我国后不同模型预测的结果差别较大, 其中RF模型的转移能力最高(图4)。RF模型预测结果显示水盾草在我国的潜在分布区主要在浙江、江苏、上海、湖北、湖南以及江西等地, 这些预测可为早期监测和预警提供参考(图5)。水盾草主要分布在平原水网的小河流和小型湖泊中, 这些水域水位较稳定, 水流速度缓慢, 适合其生存, 应针对这些生境开展调查, 明确水盾草在我国的分布范围, 并防止其进一步扩散。

参考文献

[ 丁炳扬, 于明坚, 金孝锋, 余建, 姜维梅, 董柯锋 ( 2003)

水盾草在中国的分布特点和入侵途径

生物多样性, 11, 223-230.]

DOI:10.3321/j.issn:1005-0094.2003.03.006      URL     [本文引用: 5]

水盾草 (Cabombacaroliniana)是原产南、北美洲的水生植物 ,近年来在野外调查中发现它在中国已经成为归化植物。通过华东、华南和华中地区的实地考察 ,调查点共 30 0多个 ,覆盖我国东南沿海及华中 10省 (市、区 ) 80多个县 (市 )。结果发现有水盾草分布的点 6 7个。目前水盾草在中国分布于浙江北部的杭嘉湖平原和宁绍平原、江苏南部的太湖流域及上海西部的淀山湖附近的河网地带。从地理纬度上看 ,自 2 9°33′7″N(建德梅城 )至 31°35′2″N(常熟昆承湖 ) ;主要的水域类型为一些水流缓慢、水位稳定的小河道和中小型湖泊。在水盾草所处的沉水植物群落中 ,共调查到大型沉水植物 8科 18属 2 1种 ,常见种为苦草 (Vallisnerianatans)、金鱼藻 (Ceratophyllumdemer sum)、黑藻 (Hydrillaverticillata)、菹草 (Potamogetoncrispus) ,这些也是浙北、苏南地区水域主要的水生植物。根据水盾草与各个种的种间相遇百分率来看 ,金鱼藻最高 ,为 5 1.33% ,其次为苦草、黑藻和菹草 ,分别为 4 5 .0 5 %、36 .5 6 %、35 .6 4 %。可见相对其他水生植物群落而言 ,由这些种所组成的水生植物群落更易为水盾草所侵入。从各个分布点水盾草所处状态来看 ,有些点的水盾草已成为群落的优势种 ,有的刚刚定居 ,还有的则仍处于零星漂

Dong ZD, Shi LC, Huang GZ, Qin YC ( 2007)

Investigation and countermeasure of plant invasion in Liuzhou

Guangxi Plant Protection, 20(2), 27-29. (in Chinese)

DOI:10.3969/j.issn.1003-8779.2007.02.014      URL     [本文引用: 1]

植物外侵种即当地原来没有而是由外地传入定植,并且对当地农林牧渔业生产,生态环境造成灾害的植物,称生态灾害植物。柳州属南亚热带季风气候区,很适宜植物生长、定植、繁衍,特别是植物外侵种有逐年成灾的趋头。据调查,植物外侵种在柳州市定植的目前有47种,其中13种成灾,9种严重成灾已经给农林牧渔业造成了较大的经济损失。

[ 董志德, 石亮成, 黄桂珍, 覃燕城 ( 2007)

柳州市生态灾害植物外侵种的调查与对策

广西植保, 20(2), 27-29.]

DOI:10.3969/j.issn.1003-8779.2007.02.014      URL     [本文引用: 1]

植物外侵种即当地原来没有而是由外地传入定植,并且对当地农林牧渔业生产,生态环境造成灾害的植物,称生态灾害植物。柳州属南亚热带季风气候区,很适宜植物生长、定植、繁衍,特别是植物外侵种有逐年成灾的趋头。据调查,植物外侵种在柳州市定植的目前有47种,其中13种成灾,9种严重成灾已经给农林牧渔业造成了较大的经济损失。

Evans SN, Shvets Y, Slatkin M ( 2007)

Non-equilibrium theory of the allele frequency spectrum

Theoretical Population Biology, 71, 109-119.

DOI:10.1016/j.tpb.2006.06.005      URL     [本文引用: 1]

Fan JY, Zhao NX, Li M, Wang ML, Zhu GP ( 2018)

What are the best predictors for invasive potential of weeds? Transferability evaluations of model predictions based on diverse environmental data sets for Flaveria bidentis

Weed Research, 58, 141-149.

DOI:10.1111/wre.12292      URL     [本文引用: 2]

In recent years, changes have been detected in the climatic niches of several non-native species. In spite of this, and although Ecological Niche Models (ENMs) assume species show climatic niche conservatism, most studies still use ENM to assess the risks of invasion by alien species. In this study, we tested how niche expansion of the pond slider (Trachemys scripta) differs in invaded... [Show full abstract]

He JX, Huang C, Wan FH, Guo JY ( 2011)

Invasion and distribution of Cabomba caroliniana in wetlands of Jiangsu, China

Chinese Journal of Applied and Environmental Biology, 17, 186-190. (in Chinese with English abstract)

DOI:10.3724/SP.J.1145.2011.00186      URL     [本文引用: 1]

水盾草为原产南北美洲的沉水植物,目前已在我国归化.于2009年在江苏省内40个湿地进行了超过700个样点的调查.结果表明,水盾草目前已广泛分布于江苏省大部地区,定居纬度最北至33°41′N,并在大多数入侵群落成为优势种;与2003年相比,其入侵范围和入侵程度均有较大增长.在水盾草所处的植物群落,共调查到沉水植物17种和漂浮植物11种,其中,沉水植物轮叶黑藻、苦草和金鱼藻,漂浮植物槐叶萍、浮萍、满江红和荇菜与水盾草的种间相遇度均在50%以上,表明水盾草易于入侵有以上植物存在的河道.分析表明,水盾草在江苏省的入侵主要由人为扩散引起,然后顺流扩散.由于水盾草潜在人为扩散可能性依旧很大,且江苏省全域均适宜水盾草扩散,应加以高度重视和有效管理,否则水盾草极有可能在数年内扩散至全省.

[ 何金星, 黄成, 万方浩, 郭建英 ( 2011)

水盾草在江苏省重要湿地的入侵与分布现状

应用与环境生物学报, 17, 186-190.]

DOI:10.3724/SP.J.1145.2011.00186      URL     [本文引用: 1]

水盾草为原产南北美洲的沉水植物,目前已在我国归化.于2009年在江苏省内40个湿地进行了超过700个样点的调查.结果表明,水盾草目前已广泛分布于江苏省大部地区,定居纬度最北至33°41′N,并在大多数入侵群落成为优势种;与2003年相比,其入侵范围和入侵程度均有较大增长.在水盾草所处的植物群落,共调查到沉水植物17种和漂浮植物11种,其中,沉水植物轮叶黑藻、苦草和金鱼藻,漂浮植物槐叶萍、浮萍、满江红和荇菜与水盾草的种间相遇度均在50%以上,表明水盾草易于入侵有以上植物存在的河道.分析表明,水盾草在江苏省的入侵主要由人为扩散引起,然后顺流扩散.由于水盾草潜在人为扩散可能性依旧很大,且江苏省全域均适宜水盾草扩散,应加以高度重视和有效管理,否则水盾草极有可能在数年内扩散至全省.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A ( 2005)

Very high resolution interpolated climate surfaces for global land areas

International Journal of Climatology, 25, 1965-1978.

DOI:10.1002/(ISSN)1097-0088      URL     [本文引用: 1]

Hou YT, Shu FY, Dong SX, Liu M, Xie SG ( 2012)

Cabomba caroliniana, a new recorded exotic aquatic plant in Nansi Lake and its habitat characters

Acta Hydrobiologica Sinica, 36, 1005-1008. (in Chinese with English abstract)

DOI:10.3724/SP.J.1035.2012.01005      URL     [本文引用: 1]

外来生物入侵与生境改变被认为是导致全球生物多样性下降的两大主因[1]。其中入侵植物通过营养竞争、植被结构改变、化感作用等,影响土著植物种群和群落,进而影响生态系统结构和功能。水生植物的入侵已成为影响我国淡水水体景观和生物多样性的重要因素[2—4]。水盾草

[ 侯元同, 舒凤月, 董士香, 柳明, 谢松光 ( 2012)

水盾草——南四湖外来水生植物新记录及其生境特点

水生生物学报, 36, 1005-1008.]

DOI:10.3724/SP.J.1035.2012.01005      URL     [本文引用: 1]

外来生物入侵与生境改变被认为是导致全球生物多样性下降的两大主因[1]。其中入侵植物通过营养竞争、植被结构改变、化感作用等,影响土著植物种群和群落,进而影响生态系统结构和功能。水生植物的入侵已成为影响我国淡水水体景观和生物多样性的重要因素[2—4]。水盾草

Peterson AT, Papeş M, Soberón J ( 2008)

Rethinking receiver operating characteristic analysis applications in ecological niche modeling

Ecological Modelling, 213, 63-72.

DOI:10.1016/j.ecolmodel.2007.11.008      URL     [本文引用: 2]

The area under the curve (AUC) of the receiver operating characteristic (ROC) has become a dominant tool in evaluating the accuracy of models predicting distributions of species. ROC has the advantage of being threshold-independent, and as such does not require decisions regarding thresholds of what constitutes a prediction of presence versus a prediction of absence. However, we show that, comparing two ROCs, using the AUC systematically undervalues models that do not provide predictions across the entire spectrum of proportional areas in the study area. Current ROC approaches in ecological niche modeling applications are also inappropriate because the two error components are weighted equally. We recommend a modification of ROC that remedies these problems, using partial-area ROC approaches to provide a firmer foundation for evaluation of predictions from ecological niche models. A worked example demonstrates that models that are evaluated favorably by traditional ROC AUCs are not necessarily the best when niche modeling considerations are incorporated into the design of the test.

Peterson AT, Cobos ME, Jiménez-García D ( 2018)

Major challenges for correlational ecological niche model projections to future climate conditions

Annals of the New York Academy of Sciences, 1429, 66-77.

DOI:10.1111/nyas.13873      URL     PMID:29923606      [本文引用: 1]

Appendix for: Species-level forecasts of distributional potential and likely distributional shifts in the face of changing climates have become popular in the literature in the past 20 years. Many refinements have been made to the methodology over the years, and the result has been an approach that considers multiple sources of variation and how that variation translates into signal and uncertainty in the signal in the model outputs. Although numerous previous reviews and overviews of this field have pointed out a series of basic assumptions and caveats with the methodology, three aspects of the methodology have impacts that are nothing less than overwhelming, and that have not been treated previously in such assessments. Here, we assess (1) the effects of niche truncation on niche model transfers to future climate conditions, (2) the effects of model selection procedures in a future-transfer challenge for ecological niche models, and (3) the relative contributions of different factors (samples of point data, general circulation models, representative concentration pathways, alternative model parameterizations) to overall variance in model outcomes. Overall, the view is one of caution this paradigm has pitfalls and potholes that may bias and limit confidence in niche model outputs as regards the implications of climate change.

Peterson AT, Soberón J ( 2012)

Species distribution modeling and ecological niche modeling: Getting the concepts right

Brazilian Journal for Nature Conservation, 10, 1-6.

DOI:10.30960/kjnc.2012.10.1_2.1      URL     [本文引用: 4]

Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A ( 2012)

Climatic niche shifts are rare among terrestrial plant invaders

Science, 335, 1344-1348.

DOI:10.1126/science.1215933      URL     PMID:23066061     

The assumption that climatic niche requirements of invasive species are conserved between their native and invaded ranges is key to predicting the risk of invasion. However, this assumption has been challenged recently by evidence of niche shifts in some species. Here, we report the first large-scale test of niche conservatism for 50 terrestrial plant invaders between Eurasia, North America, and Australia. We show that when analog climates are compared between regions, fewer than 15% of species have more than 10% of their invaded distribution outside their native climatic niche. These findings reveal that substantial niche shifts are rare in terrestrial plant invaders, providing support for an appropriate use of ecological niche models for the prediction of both biological invasions and responses to climate change.

Qiao HJ, Peterson AT, Campbell LP, Soberón J, Ji LQ, Escobar LE ( 2016)

NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios

Ecography, 39, 805-813.

DOI:10.1111/ecog.01961      URL     [本文引用: 1]

Abstract Robust methods by which to generate virtual species are needed urgently in the emerging field of distributional ecology to evaluate performance of techniques for modeling ecological niches and species distributions and to generate new questions in biogeography. Virtual species provide the opportunity to test hypotheses and methods based on known and unbiased distributions. We present Niche Analyst (NicheA), a toolkit developed to generate virtual species following the Hutchinsonian approach of an n -multidimensional space occupied by the species. Ecological niche models are generated, analyzed, and visualized in an environmental space, and then projected to the geographic space in the form of continuous or binary species distribution models. NicheA is implemented in a stable and user-friendly Java platform. The software, online manual, and user support are freely available at .

Qiao HJ, Feng X, Escobar LE, Peterson AT, Soberón J, Zhu GP, Papeş M ( 2018)

An evaluation of transferability of ecological niche models

Ecography, 30, 550-560.

[本文引用: 1]

Shen ZH ( 2000)

Cabomba caroliniana—New invasive alien species

Life World, ( 2), 37-38. (in Chinese)

URL     [本文引用: 1]

冬去春来 ,“沉寂”已久的水盾草又蓄势待发 ,在江南的水域中开始了它新一轮的生长繁殖。水盾草(Cabombacaroliniana)别名绿菊花草 ,属于睡莲科。由于一年中大部分时间只见它的沉水叶 ,因此乍看上去极易误认为是金鱼藻科的金鱼藻(Ceratophyl

[ 沈脂红 ( 2000)

水盾草——新入侵的外来种

生命世界, ( 2), 37-38.]

URL     [本文引用: 1]

冬去春来 ,“沉寂”已久的水盾草又蓄势待发 ,在江南的水域中开始了它新一轮的生长繁殖。水盾草(Cabombacaroliniana)别名绿菊花草 ,属于睡莲科。由于一年中大部分时间只见它的沉水叶 ,因此乍看上去极易误认为是金鱼藻科的金鱼藻(Ceratophyl

Soberón J , Nakamura ( 2009)

Niches and distributional areas: Concepts, methods and assumptions

Proceedings of the National Academy of Sciences, USA, 106, 19644-19650.

[本文引用: 1]

Thuiller W ( 2003)

BIOMOD—Optimizing predictions of species distributions and projecting potential future shifts under global change

Global Change Biology, 9, 1353-1362.

DOI:10.1046/j.1365-2486.2003.00666.x      URL     [本文引用: 1]

Tingley R, Meiri S, Chapple DG ( 2016)

Addressing knowledge gaps in reptile conservation

Biological Conservation, 204, 1-5.

DOI:10.1016/j.biocon.2016.07.021      URL     [本文引用: 1]

Reptiles are the most species-rich group of terrestrial vertebrates, yet we lack a comprehensive understanding of their extinction risk. Only 45% of described reptile species have been assessed by IUCN to date (4648 of 10,400 species); of these, 20% (945 species) are threatened with extinction, and 19% (867 species) are Data Deficient. The goal of this special issue is to improve our understanding of reptile conservation needs and extinction risk by (i) investigating patterns and drivers of extinction risk and data deficiency at a global scale; (ii) identifying and addressing taxonomic and regional gaps in our understanding of extinction risk and data deficiency; and (iii) drawing upon detailed case studies to highlight conservation approaches to mitigate extinction. By doing so, the special issue will guide future conservation efforts toward the taxa and regions in greatest need of assessment, and toward risks requiring immediate mitigation. We conclude with potential avenues for future research, including the need to address regional knowledge gaps, conduct macroecological and retrospective analyses of extinction risk, and implement targeted monitoring of conservation intervention outcomes.

Uden DR, Allen CR, Angeler DG, Corral LL, Fricke K ( 2015)

Adaptive invasive species distribution models: A framework for modeling incipient invasions

Biological Invasions, 17, 2831-2850.

DOI:10.1007/s10530-015-0914-3      URL     [本文引用: 1]

The utilization of species distribution model(s) (SDM) for approximating, explaining, and predicting changes in species’ geographic locations is increasingly promoted for proactive ecological management. Although frameworks for modeling non-invasive species distributions are relatively well developed, their counterparts for invasive species—which may not be at equilibrium within recipient environments and often exhibit rapid transformations—are lacking. Additionally, adaptive ecological management strategies address the causes and effects of biological invasions and other complex issues in social-ecological systems. We conducted a review of biological invasions, species distribution models, and adaptive practices in ecological management, and developed a framework for adaptive, niche-based, invasive species distribution model (iSDM) development and utilization. This iterative, 10-step framework promotes consistency and transparency in iSDM development, allows for changes in invasive drivers and filters, integrates mechanistic and correlative modeling techniques, balances the avoidance of type 1 and type 2 errors in predictions, encourages the linking of monitoring and management actions, and facilitates incremental improvements in models and management across space, time, and institutional boundaries. These improvements are useful for advancing coordinated invasive species modeling, management and monitoring from local scales to the regional, continental and global scales at which biological invasions occur and harm native ecosystems and economies, as well as for anticipating and responding to biological invasions under continuing global change.

Wan ZG, Gu YJ, Qian SX ( 1999)

Cabomba Aubl. of Nymphaeaceae, a new record genus from China

Journal of Wuhan Botanical Research, 17, 215-216. (in Chinese with English abstract)

DOI:10.3969/j.issn.2095-0837.1999.03.006      URL     [本文引用: 3]

睡莲科水盾草属,迄今在我国尚未见报道,作者先后在青浦和吴县等地调查植物时,采集到水盾草属的竹节水松(鱼草)。这一发现不仅丰富了我国的植物种类、区系成份和资源植物,而且对《中国植物志》的修订再版和植物资源的开发利用提供了新信息

[ 万志刚, 顾咏洁, 钱士心 ( 1999)

中国睡莲科一新记录属——水盾草属

武汉植物学研究, 17, 215-216.]

DOI:10.3969/j.issn.2095-0837.1999.03.006      URL     [本文引用: 3]

睡莲科水盾草属,迄今在我国尚未见报道,作者先后在青浦和吴县等地调查植物时,采集到水盾草属的竹节水松(鱼草)。这一发现不仅丰富了我国的植物种类、区系成份和资源植物,而且对《中国植物志》的修订再版和植物资源的开发利用提供了新信息

Warren DL, Beaumont L, Dinnage R, Baumgartner J ( 2018)

New methods for measuring ENM breadth and overlap in environmental space

Ecography, 42, 444-446.

[本文引用: 2]

Xu CY, Zhang WJ, Lu BR, Chen JK ( 2001)

Progress in studies on mechanisms of biological invasion

Biodiversity Science, 9, 430-438. (in Chinese with English abstract)

DOI:10.3321/j.issn:1005-0094.2001.04.016      URL     [本文引用: 1]

本文从外来种本身的生物学特性、外来种与新栖息地土著种之间的相互作用、群落生物多样性对入 侵种的抵抗能力、新栖息地生态环境变化对入侵种的影响等方面综述了近年来有关生物入侵机制的研究进展,并探讨了研究方法的发展和亟待解决的问题.大量的研 究表明生物入侵机制是极为多样的,可能没有一般的、通用的机制.阐明生物入侵的机制,对推动生态学理论的发展和控制有害外来种有重要意义.

[ 徐承远, 张文驹, 卢宝荣, 陈家宽 ( 2001)

生物入侵机制研究进展

生物多样性, 9, 430-438.]

DOI:10.3321/j.issn:1005-0094.2001.04.016      URL     [本文引用: 1]

本文从外来种本身的生物学特性、外来种与新栖息地土著种之间的相互作用、群落生物多样性对入 侵种的抵抗能力、新栖息地生态环境变化对入侵种的影响等方面综述了近年来有关生物入侵机制的研究进展,并探讨了研究方法的发展和亟待解决的问题.大量的研 究表明生物入侵机制是极为多样的,可能没有一般的、通用的机制.阐明生物入侵的机制,对推动生态学理论的发展和控制有害外来种有重要意义.

Yates KL, Bouchet PJ, Caley M, Mengersen K, Randin CF, Parnell S, Fielding AH, Bamford AJ, Ban S, Barbosa AM, Dormann CF, Elith J, Embling CB, Ervin GN, Fisher R, Gould S, Graf RF, Gregr EJ, Sequeira AMM ( 2018)

Outstanding challenges in the transferability of Ecological Models

Trends in Ecology and Evolution, 33, 790-802.

DOI:10.1016/j.tree.2018.08.001      URL     [本文引用: 1]

Zhang JL, Meng SY ( 2013)

Cabomba caroliniana A. Gray found in Beijing water areas

Weed Science, 31(2), 45-46. (in Chinese)

[本文引用: 1]

[ 张劲林, 孟世勇 ( 2013)

北京水域发现水盾草

杂草科学, 31(2), 45-46.]

[本文引用: 1]

Zhang Q ( 2012)

The aquatic plant of Cabomba caroliniana

Garden, ( 8), 74-75. (in Chinese)

[本文引用: 1]

[ 张群 ( 2012)

水生植物水盾草

园林, ( 8), 74-75.]

[本文引用: 1]

Zhu GP, Fan JY, Wang ML, Chen M, Qiao HJ ( 2017)

The importance of the shape of receiver operating characteristic (ROC) curve in ecological model evaluation—Case study of Hlyphantria cunea

Journal of Biosafety, 26, 184-190. (in Chinese with English abstract)

DOI:10.3969/j.issn.2095-1787.2017.03.002      URL     [本文引用: 2]

[目的]生态位模型在生物地理学、入侵生物学和保护生物学中具有广泛的应用,被越来越多地用于预测物种潜在分布和现实分布的研究中.本文以美国白蛾为例介绍pROC方案在生态位模型评价中的应用及其注意事项,以期对物种潜在分布预测进行合理的评价,促进生态位模型在我国的合理运用和发展.[方法]介绍ROC曲线和AUC值基本原理,总结其在生态位模型评价中的应用,从物种存在分布点和不存在分布点的可信度出发,分析AUC值用于模型评价的优点和不足,最后介绍局部受试者工作特征曲线的线下面积方案(pROC方案)来弥补传统AUC值的不足.[结果]AUC值虽独立于阈值,但因其综合灵敏度和特异度,而屏蔽这2个指标各自的特征,不能分别评估预测结果的灵敏度和特异度,同时对遗漏率和记账错率不能进行权衡,会误导使用者对模型的评价.与AUC值相比,ROC曲线的形状更具有价值,蕴含丰富的模型评价信息.[结论]模型评价需要将灵敏度和特异度区别对待,ROC曲线形状比AUC值在生态位模型评价中更为重要,pROC方案相对于传统AUC值具有优势,但容易对过度模拟做出不当判断.模型评价与作者研究目的密切相关:当以预测物种潜在分布为目的时(如入侵物种潜在分布、气候变化对物种分布的影响和谱系生物地理学),模型评价应当给予灵敏度(或者遗漏率)更多的权重;当以预测物种现实分布为目的时(如保护区界定和濒危物种引入),模型评价应当给予灵敏度和特异度同等的权重.

[ 朱耿平, 范靖宇, 王梦琳, 陈敏, 乔慧捷 ( 2017)

ROC曲线形状在生态位模型评价中的重要性——以美国白蛾为例

生物安全学报, 26, 184-190.]

DOI:10.3969/j.issn.2095-1787.2017.03.002      URL     [本文引用: 2]

[目的]生态位模型在生物地理学、入侵生物学和保护生物学中具有广泛的应用,被越来越多地用于预测物种潜在分布和现实分布的研究中.本文以美国白蛾为例介绍pROC方案在生态位模型评价中的应用及其注意事项,以期对物种潜在分布预测进行合理的评价,促进生态位模型在我国的合理运用和发展.[方法]介绍ROC曲线和AUC值基本原理,总结其在生态位模型评价中的应用,从物种存在分布点和不存在分布点的可信度出发,分析AUC值用于模型评价的优点和不足,最后介绍局部受试者工作特征曲线的线下面积方案(pROC方案)来弥补传统AUC值的不足.[结果]AUC值虽独立于阈值,但因其综合灵敏度和特异度,而屏蔽这2个指标各自的特征,不能分别评估预测结果的灵敏度和特异度,同时对遗漏率和记账错率不能进行权衡,会误导使用者对模型的评价.与AUC值相比,ROC曲线的形状更具有价值,蕴含丰富的模型评价信息.[结论]模型评价需要将灵敏度和特异度区别对待,ROC曲线形状比AUC值在生态位模型评价中更为重要,pROC方案相对于传统AUC值具有优势,但容易对过度模拟做出不当判断.模型评价与作者研究目的密切相关:当以预测物种潜在分布为目的时(如入侵物种潜在分布、气候变化对物种分布的影响和谱系生物地理学),模型评价应当给予灵敏度(或者遗漏率)更多的权重;当以预测物种现实分布为目的时(如保护区界定和濒危物种引入),模型评价应当给予灵敏度和特异度同等的权重.

Zhu GP, Gariepy TD, Haye T, Bu WJ ( 2017)

Patterns of niche filling and expansion across the invaded ranges of Halyomorpha halys in North America and Europe

Journal of Pest Science, 90, 1045-1057.

DOI:10.1007/s10340-016-0786-z      URL    

Abstract Studies of realized niche shift and model trans- ferability in alien species usually ignore the potential effects of source populations and different invaded-range environ- ments on niche lability. We incorporate our detailed knowledge of the native-range source populations and glo- bal introduction history of brown marmorated stink bug (Halyomorpha halys) to examine intraspecific variation in realized niche expansion and unfilling, and to investigate how niche modelling approaches are affected by that vari- ation. Realized niche dynamics of H. halys were analyzed

Zhu GP, Liu GQ, Bu WJ, Gao YB ( 2013)

Ecological niche modeling and its applications in biodiversity conservation

Biodiversity Science, 21, 90-98. (in Chinese with English abstract)

[本文引用: 3]

[ 朱耿平, 刘国卿, 卜文俊, 高玉葆 ( 2013)

生态位模型的基本原理及其在生物多样性保护中的应用

生物多样性, 21, 90-98.]

[本文引用: 3]

Zhu GP, Liu Q, Gao YB ( 2014)

Improving ecological niche model transferability to predict the potential distribution of invasive exotic species

Biodiversity Science, 22, 223-230. (in Chinese with English abstract)

DOI:10.3724/SP.J.1003.2014.08178      URL     [本文引用: 4]

生态位模型利用物种分布点所关联的环境变量去推算物种的生态需求,模拟物种的分布.在模拟入侵物种分布 时,经典生态位模型包括模型构建于物种本土分布地,然后将其转移并投射至另一地理区域,来模拟入侵物种的潜在分布.然而在模型运用时,出现了模型的转移能 力较低、模拟的结果与物种的实际分布不相符的情况,由此得出了生态位漂移等不恰当的结论.提高生态位模型的转移能力,可以准确地模拟入侵物种的潜在分布, 为入侵种的风险评估提供参考.作者以入侵种茶翅蝽(Halyomorpha halys)和互花米草(Spartina alterniflora)为例,从模型的构建材料(即物种分布点和环境变量)入手,全面阐述提高模型转移能力的策略.在构建模型之前,需要充分了解入侵 物种的生物学特性、种群平衡状态、本土地理分布范围及物种的生物历史地理等方面的知识.在模型构建环节上,物种分布点不仅要充分覆盖物种的地理分布和生态 空间的范围,同时要降低物种采样点偏差;环境变量的选择要充分考虑其对物种分布的限制作用、各环境变量之间的空间相关性,以及不同地理种群间生态空间是否 一致,同时要降低环境变量的空间维度;模型构建区域要真实地反映物种的地理分布范围,并考虑种群的平衡状态.作者认为,在生态位保守的前提下,如果模型是 构建在一个合理方案的基础上,生态位模型的转移能力是可以保证的,在以模型转移能力较低的现象来阐述生态位分化时需要引起注意.

[ 朱耿平, 刘强, 高玉葆 ( 2014)

提高生态位模型转移能力来模拟入侵物种的潜在分布

生物多样性, 22, 223-230.]

DOI:10.3724/SP.J.1003.2014.08178      URL     [本文引用: 4]

生态位模型利用物种分布点所关联的环境变量去推算物种的生态需求,模拟物种的分布.在模拟入侵物种分布 时,经典生态位模型包括模型构建于物种本土分布地,然后将其转移并投射至另一地理区域,来模拟入侵物种的潜在分布.然而在模型运用时,出现了模型的转移能 力较低、模拟的结果与物种的实际分布不相符的情况,由此得出了生态位漂移等不恰当的结论.提高生态位模型的转移能力,可以准确地模拟入侵物种的潜在分布, 为入侵种的风险评估提供参考.作者以入侵种茶翅蝽(Halyomorpha halys)和互花米草(Spartina alterniflora)为例,从模型的构建材料(即物种分布点和环境变量)入手,全面阐述提高模型转移能力的策略.在构建模型之前,需要充分了解入侵 物种的生物学特性、种群平衡状态、本土地理分布范围及物种的生物历史地理等方面的知识.在模型构建环节上,物种分布点不仅要充分覆盖物种的地理分布和生态 空间的范围,同时要降低物种采样点偏差;环境变量的选择要充分考虑其对物种分布的限制作用、各环境变量之间的空间相关性,以及不同地理种群间生态空间是否 一致,同时要降低环境变量的空间维度;模型构建区域要真实地反映物种的地理分布范围,并考虑种群的平衡状态.作者认为,在生态位保守的前提下,如果模型是 构建在一个合理方案的基础上,生态位模型的转移能力是可以保证的,在以模型转移能力较低的现象来阐述生态位分化时需要引起注意.

Zhu GP, Peterson T ( 2017)

Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth

Biological Invasions, 19, 2519-2532.

DOI:10.1007/s10530-017-1460-y      URL     [本文引用: 3]

Bai YZ, Cao XF, Chen C, Hu BS, Liu FQ ( 2009)

Potential distribution areas of alien invasive plant Flaveria bidentis (Asteraceae) in China

Chinese Journal of Applied Ecology, 20, 2377-2383. (in Chinese with English abstract)

[本文引用: 1]

[ 白艺珍, 曹向锋, 陈晨, 胡白石, 刘凤权 ( 2009)

黄顶菊在中国的潜在适生区

应用生态学报, 20, 2377-2383.]

[本文引用: 1]

Breiner FT, Guisan A, Bergamini A, Nobis MP ( 2015)

Overcoming limitations of modelling rare species by using ensembles of small models

Methods in Ecology and Evolution, 6, 1210-1218.

DOI:10.1111/2041-210X.12403      URL     [本文引用: 1]

Summary Species distribution models (SDMs) have become a standard tool in ecology and applied conservation biology. Modelling rare and threatened species is particularly important for conservation purposes. However, modelling rare species is difficult because the combination of few occurrences and many predictor variables easily leads to model overfitting. A new strategy using ensembles of small models was recently developed in an attempt to overcome this limitation of rare species modelling and has been tested successfully for only a single species so far. Here, we aim to test the approach more comprehensively on a large number of species including a transferability assessment. For each species, numerous small (here bivariate) models were calibrated, evaluated and averaged to an ensemble weighted by AUC scores. These nsembles of small models (ESMs) were compared to standard SDMs using three commonly used modelling techniques (GLM, GBM and Maxent) and their ensemble prediction. We tested 107 rare and under-sampled plant species of conservation concern in Switzerland. We show that ESMs performed significantly better than standard SDMs. The rarer the species, the more pronounced the effects were. ESMs were also superior to standard SDMs and their ensemble when they were evaluated using a transferability assessment. By averaging simple small models to an ensemble, ESMs avoid overfitting without losing explanatory power through reducing the number of predictor variables. They further improve the reliability of species distribution models, especially for rare species, and thus help to overcome limitations of modelling rare species.

Brown JL ( 2014)

SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses

Methods in Ecology and Evolution, 5, 694-700.

DOI:10.1111/2041-210X.12200      URL     [本文引用: 1]

SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most current ArcGIS software and MaxEnt software, and reduces the amount of time that would be spent developing common solutions. The central aim of this software is to automate complicated and repetitive spatial analyses in an intuitive graphical user interface. One core tenant facilitates careful parameterization of species distribution models (SDMs) to maximize each model’s discriminatory ability and minimize overfitting. This includes carefully processing of occurrence data, environmental data, and model parameterization. This program directly interfaces with MaxEnt, one of the most powerful and widely used species distribution modeling software programs, although SDMtoolbox 2.0 is not limited to species distribution modeling or restricted to modeling in MaxEnt. Many of the SDM pre- and post-processing tools have ‘universal’ analogs for use with any modeling software. The current version contains a total of 79 scripts that harness the power of ArcGIS for macroecology, landscape genetics, and evolutionary studies. For example, these tools allow for biodiversity quantification (such as species richness or corrected weighted endemism), generation of least-cost paths and corridors among shared haplotypes, assessment of the significance of spatial randomizations, and enforcement of dispersal limitations of SDMs projected into future climates—to only name a few functions contained in SDMtoolbox 2.0. Lastly, dozens of generalized tools exists for batch processing and conversion of GIS data types or formats, which are broadly useful to any ArcMap user.

Ding BY ( 1999)

The first occurrence of Cabomba caroliniana A. Gray (Cabombaceae) in China

Journal of Hangzhou University (Nature Science), 26, 97. (in Chinese)

URL     [本文引用: 1]

[ 丁炳扬 ( 1999)

绿菊花草在我国首次发现

杭州大学学报(自然科学版), 26, 97.]

URL     [本文引用: 1]

Ding BY ( 2000)

Cabomba Aublet (Cabombaceae), a newly naturalized genus of China

Acta Phytotaxonomica Sinica, 38, 198-200. (in Chinese with English abstract)

DOI:10.1088/0256-307X/17/9/008      URL     [本文引用: 2]

This paper reports a newly naturalized aquatic genus Cabomba Aublet. (Cabombaceae) in China.

[ 丁炳扬 ( 2000)

中国水生植物一新归化属——水盾草属(莼菜科)

植物分类学报, 38, 198-200.]

DOI:10.1088/0256-307X/17/9/008      URL     [本文引用: 2]

This paper reports a newly naturalized aquatic genus Cabomba Aublet. (Cabombaceae) in China.

Ding BY, Jin XF, Yu MJ, Yu J, Shen HM, Wang YF ( 2007)

Impact to native species by invaded subaqueous plant Cabomba caroliniana

Oceanologia et Limnologia Sinica, 38, 336-342. (in Chinese with English abstract)

[本文引用: 2]

[ 丁炳扬, 金孝锋, 于明坚, 余建, 沈海铭, 王月丰 ( 2007)

水盾草(Cabomba caroliniana)入侵对沉水植物群落物种多样性组成的影响

海洋与湖沼, 38, 336-342.]

[本文引用: 2]

Živković D, Stephan W ( 2011)

Analytical results on the neutral non-equilibrium allele frequency spectrum based on diffu¬sion theory

Theoretical Population Biology, 79, 184-191.

DOI:10.1016/j.tpb.2011.03.003      URL     PMID:21426909      [本文引用: 1]

The allele frequency spectrum has attracted considerable interest for the simultaneous inference of the demographic and adaptive history of populations. In a recent study, Evans et02al. (2007) developed a forward diffusion equation describing the allele frequency spectrum, when the population is subject to size changes, selection and mutation. From the diffusion equation, the authors derived a system of ordinary differential equations (ODEs) for the moments in a Wright–Fisher diffusion with varying population size and constant selection. Here, we present an explicit solution for this system of ODEs with variable population size, but without selection, and apply this result to derive the expected spectrum of a sample for time-varying population size. We use this forward-in-time-solution of the allele frequency spectrum to obtain the backward-in-time-solution previously derived via coalescent theory by Griffiths and Tavaré (1998). Finally, we discuss the applicability of the theoretical results to the analysis of nucleotide polymorphism data.

Ding BY, Yu MJ, Jin XF, Yu J, Jiang WM, Dong KF ( 2003)

The distribution characteristics and invasive route of Cabomba caroliniana in China

Biodiversity Science, 11, 223-230. (in Chinese with English abstract)

DOI:10.3321/j.issn:1005-0094.2003.03.006      URL     [本文引用: 5]

水盾草 (Cabombacaroliniana)是原产南、北美洲的水生植物 ,近年来在野外调查中发现它在中国已经成为归化植物。通过华东、华南和华中地区的实地考察 ,调查点共 30 0多个 ,覆盖我国东南沿海及华中 10省 (市、区 ) 80多个县 (市 )。结果发现有水盾草分布的点 6 7个。目前水盾草在中国分布于浙江北部的杭嘉湖平原和宁绍平原、江苏南部的太湖流域及上海西部的淀山湖附近的河网地带。从地理纬度上看 ,自 2 9°33′7″N(建德梅城 )至 31°35′2″N(常熟昆承湖 ) ;主要的水域类型为一些水流缓慢、水位稳定的小河道和中小型湖泊。在水盾草所处的沉水植物群落中 ,共调查到大型沉水植物 8科 18属 2 1种 ,常见种为苦草 (Vallisnerianatans)、金鱼藻 (Ceratophyllumdemer sum)、黑藻 (Hydrillaverticillata)、菹草 (Potamogetoncrispus) ,这些也是浙北、苏南地区水域主要的水生植物。根据水盾草与各个种的种间相遇百分率来看 ,金鱼藻最高 ,为 5 1.33% ,其次为苦草、黑藻和菹草 ,分别为 4 5 .0 5 %、36 .5 6 %、35 .6 4 %。可见相对其他水生植物群落而言 ,由这些种所组成的水生植物群落更易为水盾草所侵入。从各个分布点水盾草所处状态来看 ,有些点的水盾草已成为群落的优势种 ,有的刚刚定居 ,还有的则仍处于零星漂

/