生物多样性 ›› 2017, Vol. 25 ›› Issue (8): 830-839.doi: 10.17520/biods.2017108

• 研究报告: 动物多样性 • 上一篇    下一篇

低头坝驱动山区溪流局域栖息地和鱼类群落的同质化

卜倩婷, 李献, 朱仁, 储玲, 严云志*()   

  1. 安徽师范大学生命科学学院, 安徽省高校生物环境与生态安全省级重点实验室, 安徽芜湖 241000
  • 收稿日期:2017-03-31 接受日期:2017-04-15 出版日期:2017-08-20
  • 通讯作者: 严云志 E-mail:yanyunzhi7677@126.com
  • 作者简介:# 共同第一作者 Co-first authors
  • 基金项目:
    国家自然科学基金(31372227, 31500452)、安徽省水产产业技术体系项目(皖农科[2016]84号)和生物环境与生态安全安徽省高校省级重点实验室经费

Low-head dams driving the homogenization of local habitat and fish assemblages in upland streams of the Qingyi River

Qianting Bu, Xian Li, Ren Zhu, Ling Chu, Yunzhi Yan*()   

  1. Provincial Key Laboratory of Biotic Environmental and Ecological Safety, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000
  • Received:2017-03-31 Accepted:2017-04-15 Online:2017-08-20
  • Contact: Yan Yunzhi E-mail:yanyunzhi7677@126.com

确定溪流鱼类多样性对环境变化和人类干扰的响应, 可为溪流生态系统及鱼类多样性的保护和管理提供科学基础。本文基于对安徽省青弋江流域上游的4条一级河源溪流中39个低头坝、78个调查样点(针对每个低头坝所处河段, 分别设置坝上蓄水区(impounding area)和坝下非蓄水区(free-flowing area)各1个调查样点)的调查数据, 研究了低头坝对局域栖息地和鱼类群落同质化的驱动作用。共采集鱼类27种, 隶属5目10科, 其中蓄水区和非蓄水区的物种分别为23种和27种。主坐标分析和主坐标典范分析结果显示, 蓄水区与非蓄水区间的局域栖息地存在显著差异, 同非蓄水区相比, 蓄水区的底质粗糙度和异质性较小但水深和水宽较大; 置换多元分散分析结果显示, 蓄水区局域栖息地特征的空间变异显著低于非蓄水区, 呈现出明显的同质化现象。以非蓄水区为对照, 蓄水区鱼类群落的相似性在研究的4条溪流、2个不同季度呈现出相似的变化趋势, 即: 一些鱼类群落间的相似性上升但另外一些群落间的相似性下降, 且其相似性变化大小(ΔCSJ)与初始相似性显著负相关; 当初始相似性较低时, ΔCSJ > 0; 当初始相似性较高时, ΔCSJ < 0。本研究表明, 低头坝导致了坝上蓄水区局域栖息地特征空间变异的下降, 呈现出明显的栖息地同质化; 但蓄水区鱼类群落同时存在同质化和异质化2个过程, 群落间初始相似性大小决定了其同质化或异质化: 初始相似性较低呈同质化、较高则异质化。

关键词: 栖息地同质化, 生物同质化/异质化, 溪流鱼类, 低头坝

Identifying how fish assemblages in upland streams respond to environmental changes and anthropogenic activities is the basis for the conservation and management of upland stream systems and fish diversity. Based on data collected from 78 sampling sites (including 39 impounding areas and 39 free-flowing segments, respectively) associated with 39 low-head dams in four 1st-order streams of the Qingyi basin in Anhui Province, we investigated the effect of low-head dam on the habitat homogenization and the biotic homogenization of fish assemblages in upland streams. A total of 27 species representing 10 families and 5 orders were collected, among which 23 and 27 species were collected from the impounding and free-flowing areas, respectively. Principal coordinate analysis (PCoA) and canonical analysis of principal coordinates (CAP) results showed that the local habitat differed significantly between impounding and free-flowing areas, the former characterized by relatively low substrate coarseness and heterogeneity and the latter showing shallower water depth and width. Permutational analysis of multivariate dispersions (PERMDISP) result indicated that the heterogeneity in spatial variability of the local habitat was significantly lower in the impounding areas than the free-flowing areas, suggesting habitat homogeneity in the impoundments of low-head dams. The variations in the coefficient of similarity of fish assemblages in the impoundments relative to that found in the free-flowing segments were consistent across the four study streams and the two sampling seasons. Compared with that in the free-flowing segments, the between-assemblage similarities for fishes in the impoundments either increased or decreased, of which ΔCSJ was negatively related to the initial similarity of fish assemblages. ΔCSJ was positive when the initial similarity was lower than 50%, while ΔCSJ was negative when the initial similarity was more than 50%. Our results suggest that low-head dams may decrease the spatial variability in local habitat within the impounding areas of dams and result in the homogeneity of the local habitat. However, the variations in fish assemblages within these impoundments include two ecological processes, i.e., biotic homogeneity and heterogeneity. The biotic homogeneity/heterogeneity depends on the size of the initial similarity between different assemblages. The assemblages showing relatively low initial similarity will be homogenized and those of high initial similarity will be heterogenized.

Key words: habitat homogenization, biotic homogenization/heterogeneity, stream fishes, low-head dam

图1

青弋江河源溪流所调查的低头坝位点示意图。黑色长柱形代表调查的低头坝。"

表1

蓄水区和非蓄水区的鱼类物种组成、出现频次和相对多度"

种 Species 出现频次 Frequency of occurrence 相对多度 Relative abundance
蓄水区 Impounding 非蓄水区 Free-flowing 蓄水区 Impounding 非蓄水区 Free-flowing
鲤形目 Cypriniformes
鳅科 Cobitidae
中华花鳅 Cobitis sinensis 8.97 15.38 0.94 0.64
稀有花鳅 C. rarus 7.69 12.82 1.06 1.07
泥鳅 Misgurnus anguillicaudatus 38.45 29.49 1.71 0.80
爬鳅科 Balitoridae
原缨口鳅 Vanmanenia stenosoma 11.54 26.92 0.67 0.60
鲤科 Cyprinidae
宽鳍鱲 Zacco platypus 91.03 97.44 49.78 50.41
中华细鲫 Aphyocypris chinensis 3.85 3.85 0.12 0.07
马口鱼 Opsarrichthys bidens 23.08 19.23 1.11 0.80
尖头鱥 Phoxinus oxycephalus 5.12 3.85 1.19 0.12
光唇鱼 Acrossocheilus fasciatus 16.67 28.21 1.41 1.19
Carassius auratus 38.46 37.18 3.86 1.53
高体鰟鮍 Rhodeus ocellatus 35.90 66.67 5.05 9.63
短须鱊 Acheilognathus barbatulus 3.84 11.54 0.07 0.62
麦穗鱼 Pseudorasbora parva 34.62 53.85 2.11 2.00
小鳈 Sarcocheilichthys parvus 0.00 6.41 0.00 0.18
银鮈 Squalidus argentatus 11.54 21.79 0.52 0.81
棒花鱼 Abbottina rivularis 21.79 43.59 3.54 2.49
福建小鳔鮈 Microphysogobio fukiensis 1.28 7.69 0.02 0.81
胡鮈 Huigobio chenhsienensis 0.00 2.56 0.00 0.76
似? Belligobio nummifer 0.00 2.56 0.00 0.04
鲇形目 Siuriformes
钝头鮠科 Amblycipitidae
司氏? Liobagrus styani 3.85 10.26 0.15 0.16
鲿科 Bagridae
切尾拟鲿 Pseudobagrus truncatus 3.85 23.08 0.07 0.29
颌针鱼目 Beloniformes
怪颌鳉科 Adrianichthyidae
中华青鳉 Oryzias sinensis 15.38 11.54 1.29 0.38
合鳃鱼目 Synbranchiformes
合鳃鱼科 Synbranchidae
黄鳝 Monopterus albus 0.00 3.85 0.00 0.04
刺鳅科 Mastacembelidae
中华刺鳅 Sinobdella sinensis 1.28 7.69 0.02 0.09
鲈形目 Perciformes
沙塘鳢科 Odontobutidae
河川沙塘鳢 Odontobutis potamophila 53.85 60.26 7.50 4.07
小黄 Micropercops swinhonis 6.41 1.28 0.20 0.01
虾虎鱼科 Gobiidae
吻虾虎鱼一种 Rhinogobius sp. 60.26 92.31 17.58 20.37

图2

蓄水区和非蓄水区局域栖息地的主坐标分析双标图。实心圆圈和空心三角形分别代表蓄水区和非蓄水区; WW、WD、SH和SC分别代表水宽、水深、底质异质性和粗糙度。"

表2

栖息地因子和PCoA轴的Spearman相关系数"

栖息地变量
Habitat variables
7月 July 11月 November
PCoA1 PCoA2 PCoA1 PCoA2
水宽 Water width -0.66 -0.34 -0.51 0.12
水深 Water depth -0.58 -0.23 -0.80 -0.32
底质粗糙度
Substrate coarseness
0.41 -0.70 0.22 -0.90
底质异质性
Substrate heterogeneity
0.14 -0.56 0.09 -0.36
流速 Current velocity 0.09 -0.13 0.03 -0.09
植被盖度 Canopy 0.01 0.09 0.01 0.01
溶氧 Dissolved oxygen -0.08 0.03 0.01 -0.02
水温 Water temperature -0.02 -0.03 0.02 0.01
电导率 Conductivity -0.16 -0.22 -0.19 -0.05
pH值 pH -0.03 0.02 -0.12 0.01

图3

蓄水区与非蓄水区的鱼类群落相似性变化(ΔCSJ)及其同初始相似性的关系。A和B、C和D、E和F、G和H分别代表4条1级河源溪流; 左图和右图分别代表7月份和11月份。"

[1] Allan JD (2004) Landscapes and riverscapes: the influences of land use on stream ecosystems. Ecology, Evolution, and Systematics, 35, 257-284.
[2] Bain MB (1999) Substrate. In: Aquatic Habitat Assessment: Common Methods (eds Bain MB, Stevenson NJ), pp. 95-103. American Fisheries Society, Bethesda, Maryland.
[3] Beisner BE, Ives AR, Carpenter SR (2003) The effects of an exotic fish invasion on the prey communities of two lakes. Journal of Animal Ecology, 72, 331-342.
[4] Buisson L, Grenouillet G (2009) Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Diversity and Distributions, 15, 613-626.
[5] Casatti L, Veronezi JL, Ferreira CDP (2009) Diet of the armored catfish Aspidoras fuscoguttatus (Ostariophysi, Callichthyidae) in streams with different limnological and structural features. Biota Neotropica, 9, 113-121.
[6] Chen XY (2013) Checklist of fishes of Yunnan. Zoological Research, 34, 281-343. (in Chinese with English abstract)
[陈小勇 (2013) 云南鱼类名录. 动物学研究, 34, 281-343.]
[7] Chu L, Wang WJ, Yan LL, Yan YZ, Zhu R, Si C (2015) Fish assemblages and longitudinal patterns in the headwater streams of the Chencun Reservoir in the Huangshan Area. Acta Ecologica Sinica, 35, 900-910. (in Chinese with English abstract)
[储玲, 王文剑, 闫莉莉, 严云志, 朱仁, 司春 (2015) 黄山陈村水库上游河源溪流的鱼类群落及其纵向梯度格局. 生态学报, 35, 900-910.]
[8] Chu L, Wang WJ, Zhu R, Yan YZ, Chen YF, Wang LZ (2015) Variation in fish assemblages across impoundments of low-head dams in headwater streams of the Qingyi River, China: effects of abiotic factors and native invaders. Environmental Biology of Fishes, 98, 101-112.
[9] Daga VS, Skóra F, Padial AA, Abilhoa V, Gubiani EA, Vitule JRS (2015) Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia, 746, 327-347.
[10] Dar PA, Reshi ZA (2014) Components, processes and consequences of biotic homogenization: a review. Contemporary Problems of Ecology, 7, 123-136.
[11] Erös T, Grossman GD (2005) Effects of within-patch habitat structure and variation on fish assemblage characteristics in the Bernecei stream, Hungary. Ecology of Freshwater Fish, 14, 256-266.
[12] Gillette DP, Tiemann JS, Edds DR, Wildhaber ML (2005) Spatiotemporal patterns of fish assemblage structure in a river impoundment by low-head dams. Copeia, 2005, 539-549.
[13] Głowacki ŁB, Penczak T (2013) Drivers of fish diversity, homogenization/differentiation and species range expansions at the watershed scale. Diversity and Distributions, 19, 907-918.
[14] Graf WL (2006) Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, 79, 336-360.
[15] Jaramillo-Villa U, Maldonado-Ocampo JA, Escobar F (2010) Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. Journal of Fish Biology, 76, 2401-2417.
[16] Kornis MS, Weidel BC, Powers SM, Diebel MW, Cline TJ, Fox JM, Kitchell JF (2015) Fish community dynamics following dam removal in a fragmented agricultural stream. Aquatic Sciences, 77, 465-480.
[17] Li X, Li YR, Chu L, Zhu R, Wang LZ, Yan YZ (2016) Influences of local habitat, tributary position, and dam characteristics on fish assemblages within impoundments of low-head dams in the tributaries of the Qingyi River, China. Zoological Research, 37, 67-74.
[18] Li Y, Tao J, Chu L, Yan YZ (2017) Effects of anthropogenic disturbances on α and β diversity of fish assemblages and their longitudinal patterns in subtropical streams, China. Ecology of Freshwater Fish, doi: 10.1111/ eff.12358.
[19] Magurran AE, Dornelas M, Moyes F, Gotelli NJ, Mcgill B (2014) Rapid biotic homogenization of marine fish assemblages. Nature Communications, 6, 8405.
[20] March JG, Benstead JP, Pringle CM, Scatena FN (2003) Damming tropical island streams: problems, solutions, and alternatives. BioScience, 53, 1069-1078.
[21] Marchetti MP, Moyle PB (2001) Effects of flow regime on fish assemblages in a regulated California stream. Ecological Applications, 11, 530-539.
[22] Marchetti MP, Lockwood JL, Light T (2006) Effects of urbanization on California’s fish diversity: differentiation, homogenization and the influence of spatial scale. Biological Conservation, 127, 310-318.
[23] McCully P (1996) Silenced Rivers: the Ecology and Politics of Large Dams. Zed Books, London.
[24] McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution, 14, 450-453.
[25] McKinney ML (2008) Do humans homogenize or differentiate biotas? It depends. Journal of Biogeography, 35, 1960-1961.
[26] Meyer JL, Strayer DL, Wallace JB, Eggert SL, Helfman GS, Leonard NE (2007) The contribution of headwater streams to biodiversity in river networks. Journal of the American Water Resources Association, 43, 86-103.
[27] Moyle PB, Mount JF (2007) Homogenous rivers, homogenous faunas. Proceedings of the National Academy of Sciences, USA, 104, 5711-5712.
[28] Nelson JS (2006) Fishes of the World, 4th edn. John Wiley & Sons, Hoboken, New Jersey.
[29] Olden JD (2006) Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography, 33, 2027-2039.
[30] Olden JD, Poff NL (2003) Toward a mechanistic understanding and prediction of biotic homogenization. The American Naturalist, 162, 442-460.
[31] Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology & Evolution, 19, 18-24.
[32] Petesse ML, Petrere M (2012) Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tietê River basin, Brazil. Ecological Engineering, 48, 109-116.
[33] Petsch DK (2016) Causes and consequences of biotic homogenization in freshwater ecosystems. International Review of Hydrobiology, 101, 113-122.
[34] Poff NL, Hart DD (2002) How dams vary and why it matters for the emerging science of dam removal? BioScience, 52, 659-668.
[35] Pool TK, Olden JD (2012) Taxonomic and functional homogenization of an endemic desert fish fauna. Diversity and Distributions, 18, 366-376.
[36] Poulet N (2007) Impact of weirs on fish communities in a piedmont stream. River Research and Applications, 23, 1038-1047.
[37] Qian H, Mcglone M (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 18, 327-332.
[38] Rahel FJ (2003) Homogenization of freshwater faunas. Annual Review of Ecology and Systematics, 33, 291-315.
[39] Rahel FJ (2010) Homogenization, differentiation, and the widespread alteration of fish faunas. American Fisheries Society Symposium, 73, 311-326.
[40] Rasmussen JJ, Mcknight US, Loinaz MC, Thomsen NI, Olsson ME, Bjerg PL, Binning PJ, Kronvang B (2013) A catchment scale evaluation of multiple stressor effects in headwater streams. Science of the Total Environment, 442, 420-431.
[41] Rosenberg DM, McCully P, Pringle CM (2000) Global-scale environmental effects of hydrological alterations. BioScience, 50, 746-751.
[42] Schlosser IJ (1982) Fish community structure and function along two habitat gradients in a headwater stream. Ecological Monographs, 52, 395-414.
[43] Scott MC, Helfman GS (2001) Native invasions, homogenization, and the mismeasure of integrity of fish assemblages. Fisheries, 26, 6-15.
[44] Stockwell CA, Mulvey M, Vinyard GL (1996) Translocations and the preservation of allelic diversity. Conservation Biology, 10, 1133-1141.
[45] Storfer A (1999) Gene flow and endangered species translocations: a topic revisited. Biological Conservation, 87, 173-180.
[46] Sui XY, Lu Z, Yan YZ, Chen YF, Jia YT (2014) Influence of a large dam on the longitudinal patterns of fish assemblages in Qingyi Stream. Zoological Research, 35, 362-372.
[47] Tiemann JS, Gillette DP, Wildhaber ML, Edds DR (2004) Effects of lowhead dams on riffle-dwelling fishes and macroinvertebrates in a midwestern river. Transactions of American Fisheries Society, 133, 705-717.
[48] Torgersen CE, Close DA (2004) Influence of habitat heterogeneity on the distribution of larval Pacific lamprey (Lampetra tridentata) at two spatial scales. Freshwater Biology, 49, 614-630.
[49] Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
[50] Vitule JRS, Skóra F, Abilhoa V (2012) Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Diversity and Distributions, 18, 111-120.
[51] Wang GM, Yang JC, Jiang CD, Zhao HT, Zhang ZD (2009) A literature review on biotic homogenization. Biodiversity Science, 17, 117-126. (in Chinese with English abstract)
[王光美, 杨景成, 姜闯道, 赵洪涛, 张志东 (2009) 生物同质化研究透视. 生物多样性, 17, 117-126.]
[52] Wang WJ, Chu L, Si C, Zhu R, Chen WH, Chen FM, Yan YZ (2013) Spatial and temporal patterns of stream fish assemblages in the Qiupu Headwaters National Wetland Park. Zoological Research, 34, 417-428. (in Chinese with English abstract)
[王文剑, 储玲, 司春, 朱仁, 陈文豪, 陈方明, 严云志 (2013) 秋浦河国家湿地公园溪流鱼类群落的时空格局. 动物学研究, 34, 417-428.]
[53] Yan YZ, Wang H, Zhu R, Chu L, Chen YF (2013) Influences of low-head dams on the fish assemblages in the headwater streams of the Qingyi watershed, China. Environmental Biology of Fishes, 96, 495-506.
[54] Zhu R, Si C, Chu L, Rui M, Wu TT, Yan YZ (2015) The spatio-temporal distribution of fish population in the headwaters of the Qingyi River: a study based on the habitat patches. Acta Hydrobiologica Sinica, 39, 686-694. (in Chinese with English abstract)
[朱仁, 司春, 储玲, 芮明, 吴添天, 严云志 (2015) 基于栖息地斑块尺度的青弋江河源溪流鱼类群落的时空格局. 水生生物学报, 39, 686-694.]
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed