生物多样性 ›› 2016, Vol. 24 ›› Issue (6): 665-700.doi: 10.17520/biods.2015254

• • 上一篇    下一篇

雌雄异熟植物露蕊乌头开花时间对雌雄功能期及表型性别的影响

李琳1, 路宁娜2, 樊宝丽3, 赵志刚1, , A;*()   

  1. 1 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州 730000
    2 西北师范大学生命科学学院, 兰州 730000
    3 甘肃省治沙研究所, 兰州 730000
  • 收稿日期:2015-09-18 接受日期:2016-03-10 出版日期:2016-06-20
  • 通讯作者: 赵志刚 E-mail:zhaozhg@lzu.edu.cn
  • 基金项目:
    国家自然科学基金(31370402)、中央高校基本科研自由探索项目(lzujbky-2015-95)、甘肃省自然科学基金(145RJZA166)及草地农业生态系统国家重点实验室开放基金资助(SKLGAE201504)

Effect of flowering time on floral sexual durations and phenotypic gender in dichogamous Aconitum gymnandrum

Lin Li1, Ningna Lu2, Baoli Fan3, Zhigang Zhao1, *()   

  1. 1 School of Life Sciences, Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou 730000
    2 College of Life Sciences of Northwest Normal University, Lanzhou 730000
    3 Gansu Desert Control Research Institute, Lanzhou 730000
  • Received:2015-09-18 Accepted:2016-03-10 Online:2016-06-20
  • Contact: Zhao Zhigang E-mail:zhaozhg@lzu.edu.cn

开花时间决定了植物雌雄功能的交配机会, 最终影响繁殖成功。交配环境假说认为雌雄异熟植物开花时间的差异能引起植物表型性别的变异, 改变种群内的交配环境, 影响植物对雌雄功能的最佳性分配。为了研究开花时间对雌雄异熟植物的雌雄性别时期及表型性别的影响, 本文以毛茛科雄性先熟植物露蕊乌头(Aconitum gymnandrum)为实验材料, 记录了雄性和雌性功能期, 分析了植株开花时间、花的雌雄功能期和表型性别的关系。结果表明: 在植物同一花序内, 较晚开放的花有更长的雄性期和更短的雌性期, 性分配在时间上偏雄。雌雄功能期在时间上的相对分配随植物开花时间的变化表现出相似的趋势: 较晚开的花或较晚开花的个体, 花的雄性功能期相对于雌性功能期更长, 在时间上更偏向雄性功能。而且, 开花时间的差异影响种群内花的性比和植物个体的表型性别动态。随着开花时间由早到晚的变化, 种群内早期以雄花为主,末期以雌花为主, 种群内性别环境由偏雄向偏雌变化, 因此植株个体的平均表型性别则从偏雌转向偏雄。本文结果支持交配环境假说, 雄性先熟的露蕊乌头开花早期, 种群内花的性别比偏雄, 种群表型性别环境偏雄, 因而植物个体平均表型性别偏雌, 性别分配(即时间分配)偏向雌性功能, 而晚开花个体的平均性别偏雄, 更偏向雄性功能的分配。

关键词: 露蕊乌头, 开花时间, 表型性别, 雄性先熟, 性别功能期

The flowering time plays an important role in the mating opportunities of male and female functions and final reproductive success in plants. The mating environment hypothesis predicts that the differences of flowering time in protandrous species can change individual’s phenotypic gender and the mating environment within a population, finally affect the optimal allocation of resources to sexual functions. To determine the effect of flowering time on sexual durations and phenotypic gender in protandrous plants, we recorded the male and female phase durations of all flowers in protandrous Aconitum gymnandrum (Ranunculaceae), and examined the relationships of flowering phenology and floral sexual durations and phenotypic gender. The results showed that the late flowers (top) had longer male duration versus female duration compared to early those (basal) within a inflorescence, showing temporally male-biased allocation. The relatively temporal allocations to both sexual durations also presented a similar trend among plants with different flowering time. Relatively longer male duration vs. female duration in the later flowers or late-flowering individuals, showed temporally male-biased allocation. Furthermore, individual’s variation in flowering time affected floral sex ratio within population and the dynamics of phenotypic gender of individuals. It showed a shift from male-biased to female-biased gender during flowering season in A. gymnandrum population, because most of the individuals had only male-phase flowers at the beginning of flowering stage and only female-phase flowers at the end. Therefore, mean phenotypic gender of individuals shifted from femaleness to maleness with flowering time. Our results support the mating environment hypothesis, i.e. male-biased floral sexual ratio (mating environment) early in protandrous A. gymnandrum population leads to female-biased phenotypic gender of individuals flowered early and thus female-biased temporal sex allocation in early-flowering individuals and early flowers within inflorescences in comparison with the late-flowering individuals and late flowers.

Key words: Aconitum gymnandrum, flowering time, phenotypic gender, dichogamous, sexual durations

图1

露蕊乌头雌雄功能期(平均值±标准误)与花序内花位置的关系(n = 94)"

图2

露蕊乌头花水平单花花期(A)和雄性/雌性功能期(B)随开花时间的变化(n = 312)"

图3

露蕊乌头个体初次开花时间与平均单花花期及平均雄性/雌性功能期(即个体平均雄性期与雌性期的比值)的关系(n = 104)。(A)个体初次开花时间对平均单花花期的影响; (B)个体初次开花时间与平均每朵花雄性/雌性功能期的关系。"

图4

植株的开花动态。(A)雌雄功能期的花数目随开花时间的变化; (B)种群的表型性别(平均值±标准误)和植株1 (长虚线)、植株99 (短虚线)分别随开花时间的变化; (C)个体水平初次开花时间(FFD)与平均表型性别之间的关系。"

[1] Aizen MA (2001) Flower sex ratio, pollinator abundance, and the seasonal pollination dynamics of a protandrous plant. Ecology, 82, 127-144.
[2] Arroyo MTK, Armesto JJ, Primack R (1985) Community studies in pollination ecology in the high temperate Andes of Central Chile. II. Effect of temperature on visitation rates and pollination possibilities. Plant Systematics and Evolution, 149, 187-203.
[3] Austen EJ, Weis AE (2014) Temporal variation in phenotypic gender and expected functional gender within and among individuals in an annual plant. Annals of Botany, 114, 167-177.
[4] Austen EJ, Forrest JRK, Weis AE (2015) Within-plant variation in reproductive investment: consequences for selection on flowering time. Journal of Evolutionary Biology, 28, 65-79.
[5] Bingham RA, Orthner AR (1988) Efficient pollination of alpine plants. Nature, 391, 238-239.
[6] Blionis GJ, Halley JM, Vokou D (2001) Flowering phenology of Campanula on Mt Olynipos, Greece. Ecography, 24, 696-706.
[7] Brookes RH, Jesson LK (2010) Do pollen and ovule number match the mating environment? An examination of temporal change in a population of Stylidium armeria. International Journal of Plant Sciences, 171, 818-827.
[8] Brunet RH, Charlesworth D (1995) Floral sex allocation in sequentially blooming plant. Evolution, 49, 70-79.
[9] Brunet J (1996) Male reproductive success and variation in fruit and seed set in Aquilegia caerulea (Ranunculaceae). Ecology, 77, 2458-2471.
[10] Diggle PK (1995) Architectural effects and the interpretation of patterns of fruit and seed development. Annual Review of Ecology and Systematics, 26, 531-552.
[11] Evanhoe L, Galloway LF (2002) Floral longevity in Campanula americana (Campanulaceae): a comparison of morphological and functional gender phases. American Journal of Botany, 89, 587-591.
[12] Herrera CM (2009) Multiplicity in Unity: Plant Subindividual Variation and Interactions With Animals. University of Chicago Press, Chicago.
[13] Hiraga T, Sakai S (2007) The effects of inflorescence size and flower position on biomass and temporal sex allocation in Lobelia sessiliflora. Plant Ecology, 188, 205-214.
[14] Huang SQ, Tang LL, Yu Q, Guo YH (2004) Temporal floral sex allocation in protogynous Aquilegia yabeana contrasts with protandrous species: support for the mating environment hypothesis. Evolution, 58, 1131-1134.
[15] Ishii HS, Harder LD (2012) Phenological associations of within- and among-plant variation in gender with floral morphology and integration in protandrous Delphinium glaucum. Journal of Evolutionary Biology, 100, 1029-1038.
[16] Ishii HS, Sakai S (2002) Temporal variation in floral display size and individual floral sex allocation in racemes of Narthecium asiaticum (Liliaceae). American Journal of Botany, 89, 441-446.
[17] Kudo G, Maeda T, Narita K (2001) Variation in floral sex allocation and reproductive success within inflorescences of Corydlis ambigua (Fumariaceae): pollination efficiency or resource limitation? Journal of Ecology, 89, 48-56.
[18] Lloyd DG (1980) Sexual strategies in plants. III. A quantitative method for describing the gender of plants. New Zealand Journal of Botany, 18, 103-108.
[19] Lu NN, Li XH, Li L, Zhao ZG (2015) Variation of nectar production in relation to plant characteristics in protandrous Aconitum gymnandrum. Journal of Plant Ecology, 8, 122-129.
[20] Pellmyr O (1987) Multiple sex expressions in Cimicifuga simplex: dichogamy destabilizes hermaphroditism. Biological Journal of the Linnean Society, 31, 161-174.
[21] Vogler DW, Peretz S, Stephenson AG (1999) Floral plasticity in an iteroparous plant: the interactive effects of genotype, environment, and ontogeny in Campanula rapunculoides (Campanulaceae). American Journal of Botany, 86, 482-494.
[22] Wells MS, Lloyd DG (1991) Dichogamy, gender variation and bet-hedging in Pseudowintera colorate. Evolutionary Ecology, 5, 310-326.
[23] Zhang YW, Zhao JM, Wang Y (2011) The dynamics of pollen removal and deposition, and its effects on sexual phases in a protandrous plant: Glechoma longituba. Nordic Journal of Botany, 29, 105-111.
[24] Zhao ZG, Meng JL, Fan BL, Du GZ (2008) Reproductive patterns within racemes in protandrous Aconitum gymnandrum (Ranunculaceae): potential mechanism and among-family variation. Plant Systematics and Evolution, 273, 247-256.
[1] 张艺能, 周玉萍, 陈琼华, 黄小玲, 田长恩. 拟南芥开花时间调控的分子基础[J]. 植物学报, 2014, 49(4): 469-482.
[2] 刘乐乐, 刘左军, 杜国祯, 赵志刚. 毛茛状金莲花不同花期的花特征和访花昆虫的变化及表型选择[J]. 生物多样性, 2012, 20(3): 317-323.
[3] 张振春, 谭敦炎. 雄全同株植物簇花芹花期性别分配与开花式样[J]. 植物生态学报, 2012, 36(1): 63-71.
[4] 王丽, 谭敦炎 . 新疆党参的花部综合征与次级花粉呈现[J]. 生物多样性, 2011, 19(1): 24-33.
[5] 罗睿*;郭建军. 植物开花时间: 自然变异与遗传分化[J]. 植物学报, 2010, 45(01): 109-118.
[6] 杨淑霞, 高江云. 心叶凹唇姜的开花格局和雄性先熟机制[J]. 植物生态学报, 2009, 33(3): 449-459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed