生物多样性 ›› 2015, Vol. 23 ›› Issue (4): 463-470.doi: 10.17520/biods.2015011

• • 上一篇    下一篇

气候假说对内蒙古草原群落物种多样性格局的解释

刘庆福1, 刘洋1, 孙小丽1, 张雪峰1, 康萨如拉1, 丁勇2, 张庆1, 3, , A;*(), 牛建明1, 3, , A;*()   

  1. 1 (内蒙古大学生命科学学院, 呼和浩特 010021) 2 (中国农业科学院草原研究所, 呼和浩特 010010) 3 (中美生态、能源及可持续性科学内蒙古研究中心, 呼和浩特 010021);
  • 收稿日期:2015-01-14 接受日期:2015-06-12 出版日期:2015-07-20
  • 通讯作者: 张庆,牛建明 E-mail:qzhang82@163.com;jmniu2005@163.com
  • 基金项目:
    国家自然科学基金(31200414)、国家重点基础研究发展计划(2012CB722201)、内蒙古自然基金(2015MS0302)、内蒙古高等学校创新团队计划(NMGIRT1302)及内蒙古大学高层次引进人才项目(125106)

The explanation of climatic hypotheses to community species diversity patterns in Inner Mongolia grasslands

Qingfu Liu1, Yang Liu1, Xiaoli Sun1, Xuefeng Zhang1, Sarula Kang1, Yong Ding2, Qing Zhang1, 3, *(), Jianming Niu1, 3, *()   

  1. 1 School of Life Sciences, Inner Mongolia University, Hohhot 010021
    2 Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010
    3 Sino-US Center for Conservation, Energy and Sustainability Science in Inner Mongolia, Hohhot 010021
  • Received:2015-01-14 Accepted:2015-06-12 Online:2015-07-20
  • Contact: Zhang Qing,Niu Jianming E-mail:qzhang82@163.com;jmniu2005@163.com

物种丰富度的地理格局是宏观生态学和生物地理学的中心议题之一。本文基于内蒙古草原192个野外样地的调查数据, 结合各样地年平均气温、年降水量等9个气候因子, 探讨内蒙古草原物种丰富度格局及其主导因素, 以确定气候假说在该区的适用性。结果表明: (1)内蒙古草原物种丰富度经度格局显著, 呈现沿经度升高而增加的趋势, 同时由于经纬度的共线性, 也呈现出沿纬度升高而增加的趋势。(2)方差分解显示, 能量单独解释率为2.7%, 水分单独解释率为11.4%, 水分和能量共同解释率为46.3%, 未解释部分为39.6%, 可见能量与水分的共同作用在物种丰富度格局形成中占主导地位, 支持水热动态假说。这说明水热动态假说适用于解释内蒙古草原物种丰富度 格局。

关键词: 能量因子, 水分因子, 经度, 水热动态假说

Understanding spatial pattern of species diversity is central to macroecology and biogeography. Based on species diversity and nine different climatic factors of 192 field sites, we explored geographic patterns of species richness and dominant factors in Inner Mongolia grassland, and further determined applicability of different climatic hypotheses in this area. Results indicated the species richness of the Inner Mongolia grassland exhibited significant longitudinal gradients, which increased from west to east. Meanwhile, because of the collinearity of latitude and longitude within the Inner Mongolia grassland, it also exhibited significant latitudinal gradients. Analysis of variance indicated that only 2.7% and 11.4% of the total variance were explained by energy and moisture factors, respectively, while 46.3% was simultaneously explained by the two groups of factors, 39.6% was explained by other undetermined factors. These results indicate that energy and moisture play a decisive role in the distribution patterns of species richness and support the water-energy dynamic hypothesis. We find the water-energy dynamic hypothesis is best suited for the Inner Mongolia grassland.

Key words: energy factors, moisture factors, longitude, water-energy dynamic hypothesis

图1

内蒙古草原调查样地分布图"

图2

内蒙古草原物种丰富度随经度(a)和纬度(b)的变化"

图3

内蒙古草原物种丰富度与气候因子的一元回归分析"

表1

能量类与水分类气候因子主成分的特征值和贡献率"

类型
Class
成分
Component
特征值
Eigenvalue
方差贡献率
Contribution rate of variance (%)
方差累计贡献率
Cumulative contribution rate of variance (%)
能量 1 4.126 82.525 82.525
Energy 2 0.749 14.972 97.497
3 0.100 2.006 99.502
4 0.024 0.470 99.973
5 0.001 0.027 100.000
水分 1 2.831 94.363 94.363
Moisture 2 0.168 5.588 99.951
3 0.001 0.049 100.000

表2

能量类与水分类气候因子的主成分矩阵"

能量因子 Energy factors 成分 Component
1 2 3 4 5
潜在蒸散量 Potential evapotranspiration (PET, mm) 0.864 -0.451 0.220 -0.039 -0.001
年平均气温 Mean annual temperature (MAT, °C) 0.989 -0.095 -0.095 0.051 -0.027
最暖月平均气温 Mean temperature of warmest month (WMT, °C) 0.832 0.536 0.127 0.074 0.009
最冷月平均气温 Mean temperature of coldest month (CMT, °C) 0.932 -0.328 -0.148 0.028 0.023
温暖指数 Warmth index (WI) 0.917 0.376 -0.070 -0.115 -0.001
水分因子 Moisture factors 成分 Component
1 2 3
年平均降水量 Mean annual precipitation (MAP, mm) 0.350 -0.791 -19.410
最湿润季降水量 Precipitation of wettest quarter (PWQ, mm) 0.347 -1.133 17.474
最干燥季降水量 Precipitation of driest quarter (PDQ, mm) 0.333 2.014 2.211

图4

能量类和水分类气候因子对内蒙古草原物种丰富度格局的解释。a为能量因子单独解释率, b为能量因子与水分因子共同解释率, c为水分因子单独解释率, d为未解释部分。"

1 Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands.Global Change Biology, 16, 358-372.
2 Bai Y, Wu J, Pan Q, Huang J, Wang Q, Li F, Buyantuyev A, Han X (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe.Journal of Applied Ecology, 44, 1023-1034.
3 Chi XL, Tang ZY, Fang JY (2014) Patterns of phylogenetic beta diversity in China’s grasslands in relation to geographical and environmental distance.Basic and Applied Ecology, 15, 416-425.
4 Currie DJ, Francis AP (2004) Regional versus climatic effect on taxon richness in angiosperms: reply to Qian and Ricklefs.The American Naturalist, 163, 780-785.
5 Duffy JE (2008) Why biodiversity is important to the functioning of real-world ecosystems.Frontiers in Ecology and the Environment, 7, 437-444.
6 Evans KL, James NA, Gaston KJ (2006) Abundance, species richness and energy availability in the North American avifauna.Global Ecology and Biogeography, 15, 372-385.
7 Fan WY (范玮熠), Wang XA (王孝安), Guo H (郭华) (2006) Analysis of plant community successional series in the Ziwuling area on the Loess Plateau.Acta Ecologica Sinica(生态学报), 26, 706-714. (in Chinese with English abstract)
8 Foster DR (1992) Land-use history (1730-1990) and vegetation dynamics in central New England, USA.Journal of Ecology, 80, 753-771.
9 Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227.
10 González-Espinosa M, María Rey-Benayas J, Ramírez-Marcial N, Huston MA, Golicher D (2004) Tree diversity in the northern Neotropics: regional patterns in highly diverse Chiapas, Mexico.Ecography, 27, 741-756.
11 Gorcynski W (1920) Sur le calcul du continentalisme et son application dans la climatologie.Geografiska Annaler, 2, 324-331. (in French)
12 Guo QF, Berry WL (1998) Species richness and biomass: dissection of the hump-shaped relationships.Ecology, 79, 2555-2559.
13 Guo ZX (国志兴), Wang ZM (王宗明), Song KS (宋开山), Zhang B (张柏), Li F (李方), Liu DW (刘殿伟) (2007) Correlations between forest vegetation NDVI and water/thermal condition in Northeast China forest regions in 1982-2003.Chinese Journal of Ecology(生态学杂志), 26, 1930-1936. (in Chinese with English abstract)
14 Inner Mongolia-Ningxia Complex Expert Team of the Chinese Academy of Sciences (中国科学院内蒙古宁夏综合考察队) (1985) Vegetation of Inner Mongolia (内蒙古植被). Science Press, Beijing. (in Chinese)
15 Janzen DH (1967) Why mountain passes are higher in the tropics.The American Naturalist, 101, 233-249.
16 Li L, Wang Z, Zerbe S, Abdusalih N, Tang Z, Ma M, Yin L, Mohammat A, Han W, Fang J (2013) Species richness patterns and water-energy dynamics in the Drylands of Northwest China.PLoS ONE, 8, e66450.
17 Ma YQ (马毓泉) (1995-1998) Flora of Inner Mongolia (内蒙古植物志). Inner Mongolia People’s Publishing House, Hohhot. (in Chinese)
18 Mitchell-Olds T, Shaw RG (1987) Regression analysis of natural selection: statistical inference and biological interpretation.Evolution, 41, 1149-1161.
19 Niu JM (牛建明) (2000) Relationship between main vegetation types and climatic factors in Inner Mongolia.Chinese Journal of Applied Ecology(应用生态学报), 11, 47-52. (in Chinese with English abstract)
20 O’Brien EM (1998) Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model.Journal of Biogeography, 25, 379-398.
21 O’Brien EM (2006) Biological relativity to water energy dynamics.Journal of Biogeography, 33, 1868-1888.
22 O’Brien EM, Field R, Whittaker RJ (2000) Climatic gradients in woody plant (tree and shrub) diversity: wate-energy dynamics, residual variation, and topography.Oikos, 89, 588-600.
23 Palmer M (1994) Variation in species richness: towards a unification of hypotheses.Folia Geobotanica et Phytotaxonomica, 29, 511-530.
24 Phillips LB, Hansen AJ, Flather CH, Robison-Cox J (2010) Applying species-energy theory to conservation: a case study for North American birds.Ecological Applications, 20, 2007-2023.
25 Schrott GR, With KA, King AW (2005) On the importance of landscape history for assessing extinction risk.Ecological Applications, 15, 493-506.
26 Suttie JM, Reynolds SG, Batello CB (2005) Grasslands of the World. Food and Agriculture Organization of the United Nations, Rome.
27 Turner JR (2004) Explaining the global biodiversity gradient: energy, area, history and natural selection.Basic and Applied Ecology, 5, 435-448.
28 Wang ZH, Fang JY, Tang ZY, Lin X (2012) Relative role of contemporary environment versus history in shaping diversity patterns of China’s woody plants.Ecography, 35, 1124-1133.
29 Wang ZH (王志恒), Tang ZY (唐志尧), Fang JY (方精云) (2009) The species-energy hypothesis as a mechanism for species richness patterns.Biodiversity Science(生物多样性), 17, 613-624. (in Chinese with English abstract)
30 Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity.Journal of Biogeography, 28, 453-470.
31 Wilson E (1988) Biodiversity. The National Academies Press, Washington, DC.
32 Woodward F, Fogg G, Heber U (1990) The impact of low temperatures in controlling the geographical distribution of plants.Philosophical Transactions of the Royal Society B: Biological Sciences, 326, 585-593.
33 World Conservation Monitoring Centre (1992) Global Biodiversity: Status of the Earth’s Living Resources. Chapman & Hall, London.
34 Wright DH (1983) Species-energy theory: an extension of species-area theory.Oikos, 41, 496-506.
35 Xu KX (徐克学) (1999) Biomathematics (生物数学). Science Press, Beijing. (in Chinese)
[1] 邹东廷, 王庆刚, 罗奥, 王志恒. (2019) 中国蔷薇科植物多样性格局及其资源植物保护现状. 植物生态学报, 43(1): 1-15.
[2] 杜满义, 范少辉, 刘广路, 封焕英, 郭宝华, 唐晓鹿. (2016) 中国毛竹林碳氮磷生态化学计量特征. 植物生态学报, 40(8): 760-774.
[3] 王月霞, 金毅, 吴初平, 翁东明, 叶立新, 陈德良, 余建平, 刘金亮, 仲磊, 于明坚. (2016) 浙江省主要亚热带森林群落类型物种和谱系水平的α和β多样性比较. 生物多样性, 24(8): 863-874.
[4] 马玉珠, 钟全林, 靳冰洁, 卢宏典, 郭炳桥, 郑媛, 李曼, 程栋梁. (2015) 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子. 植物生态学报, 39(2): 159-166.
[5] 拉琼, 扎西次仁, 朱卫东, 许敏, 钟扬. (2014) 雅鲁藏布江河岸植物物种丰富度分布格局及其环境解释. 生物多样性, 22(3): 337-347.
[6] 曹广才, 吴东兵. (1991) 不同地区春播小麦生育天数的对比试验. 植物生态学报, 15(2): 191-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed