[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]F-box基因拷贝数目变异的机制研究:以12种果蝇为例
收稿日期: 2010-10-26
录用日期: 2010-12-30
网络出版日期: 2011-04-01
基金资助
国家自然科学基金(30970210)
Mechanisms underlying copy number variation in F-box genes: evidence from comparison of 12 Drosophila species
Received date: 2010-10-26
Accepted date: 2010-12-30
Online published: 2011-04-01
拷贝数目变异是一种对表型变异和生物进化具有重要意义的基因组结构变异。以前的研究表明不同物种中F-box基因的拷贝数目差异较大。为了深入探索拷贝数目变异的式样和机制, 我们以12个果蝇近缘种为研究对象, 分析了F-box基因的系统发育关系、进化式样以及它们在染色体上的位置。结果发现, 虽然各个物种中F-box基因的拷贝数目差别不大(42-47个), 但是仍然存在着很多引起拷贝数目变异的基因获得和丢失事件。这说明表面上变化不大的拷贝数目在一定程度上掩盖了频繁发生的基因获得和丢失事件。通过比较这些基因在染色体上的位置, 发现只有在亲缘关系很近的物种之间才能鉴定出有明显微共线性关系的基因组区段。我们还发现, 造成F-box基因拷贝数目增加的主要机制是散在重复和串联重复, 而反转录转座和新基因的非编码区起源也是两种值得注意的机制。此外, 序列变异导致的外显子边界变化以及外显子丢失是引起拷贝数目减少的两种机制。在12种果蝇的最近共同祖先中, F-box基因的拷贝数目与现存物种基本相似, 但是基因的获得和丢失事件使得现存物种中的F-box基因在构成上已经有了明显的差别。对数目变异的式样及其与基因功能的关系的研究表明, 拷贝数目变异是F-box基因家族“生与死”的进化在基因组层面的系统反映, 并有可能为表型变异提供了原始材料。
李安, 徐桂霞, 孔宏智 . F-box基因拷贝数目变异的机制研究:以12种果蝇为例[J]. 生物多样性, 2011 , 19(1) : 3 -16 . DOI: 10.3724/SP.J.1003.2011.14256
Copy number variation (CNV) is a special type of mutational change that plays important roles in phenotypic variation and organismal evolution. To explore the mechanisms underlying copy number variation and to understand its biological significance, we analyzed the phylogenetic relationships, evolutionary patterns and chromosomal locations of F-box genes in 12 closely-related Drosophila species. A total of 541 F-box genes were identified and phylogenetic analyses suggested that they are members of 48 gene clusters (or orthologous groups). Although we observed no drastic changes in the total numbers of F-box genes among the 12 extant Drosophila species (42-47), we found many gene gain and loss events that have caused copy number variation. These results demonstrated that the similarity in the total numbers of F-box genes among different species has, to a certain degree, masked the frequent and independent gain and loss events. Comparisons of the chromosomal locations of orthologous genes showed that extensive microsynteny could be detected only between very closely-related sibling species. We also found that the main mechanisms that caused the increase in gene number were dispersed duplication and tandem duplication, while retroposition and de novo origination from non-coding sequences were two other noteworthy mechanisms. Mutations that caused shifts in exon-intron boundaries and/or losses of exons seemed to be the main mechanisms that underlie decreases in copy number. Although the most recent common ancestor (MRCA) of the 12 Drosophila species had a similar number of genes as the extant species we studied, gains of new genes and losses of existing ones have caused changes in the makeup of F-box genes in descendent species. Our study suggested that variations in the numbers of gene copies is a reflection of “birth-and-death” evolution at the genomic level and have provided raw materials for phenotypic and physiological diversification.
Key words: copy number variation; F-box gene; Drosophila; orthologs
[1] | Bai C, Richman R, Elledge SJ (1994) Human cyclin F. The EMBO Journal, 13,6087-6098. |
[2] | Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Research, 30,276-280. |
[3] | Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nature Reviews Genetics, 8,639-646. |
[4] | Cai J, Zhao R, Jiang H, Wang W (2008) De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics, 179,487-496. |
[5] | Celniker SE, Wheeler DA, Kronmiller B, Carlson JW, Halpern A, Patel S, Adams M, Champe M, Dugan SP, Frise E, Hodgson A, George RA, Hoskins RA, Laverty T, Muzny DM, Nelson CR, Pacleb JM, Park S, Pfeiffer BD, Richards S, Sodergren EJ, Svirskas R, Tabor PE, Wan K, Stapleton M, Sutton GG, Venter C, Weinstock G, Scherer SE, Myers EW, Gibbs RA, Rubin GM (2002) Finishing a whole- genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biology, 3, research0079.1-0079.14. |
[6] | Derti A, Roth FP, Church GM, Wu CT (2006) Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants. Nature Genetics, 38,1216-1220. |
[7] | Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Developmental Cell, 9,109-119. |
[8] | Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature, 450,203-218. |
[9] | Eddy SR (1998) Profile hidden Markov models. Bioinformatics, 14,755-763. |
[10] | Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52,696-704. |
[11] | Han J, Gon P, Reddig K, Mitra M, Guo P, Li HS (2006) The fly CAMTA transcription factor potentiates deactivation of rhodopsin, a G protein-coupled light receptor. Cell, 127,847-858. |
[12] | Hinds DA, Kloek AP, Jen M, Chen XY, Frazer KA (2006) Common deletions and SNPs are in linkage disequilibrium in the human genome. Nature Genetics, 38,82-85. |
[13] | Junier T, Pagni M (2000) Dotlet: diagonal plots in a web browser. Bioinformatics, 16,178-179. |
[14] | Kipreos ET, Pagano M (2000) The F-box protein family. Genome Biology, 1,REVIEWS3002. |
[15] | Levine MT, Jones CD, Kern AD, Lindfors HA, Begun DJ (2006) Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proceedings of the National Academy of Sciences, USA, 103,9935-9939. |
[16] | Li D, Dong Y, Jiang Y, Jiang H, Cai J, Wang W (2010) A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Research, 20,408-420. |
[17] | Long M, Betran E, Thornton K, Wang W (2003) The origin of new genes: glimpses from the young and old. Nature Reviews Genetics, 4,865-875. |
[18] | Markow TA, O’Grady PM (2005) Drosophila: A Guide to Species Identification and Use, P. 250. Elsevier Academic, London. |
[19] | Nei M (2007) The new mutation theory of phenotypic evolution. Proceedings of the National Academy of Sciences, USA, 104,12235-12242. |
[20] | Nicholas K, Nicholas HB Jr (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Distributed by the author. |
[21] | Niimura Y, Nei M (2006) Evolutionary dynamics of olfactory and other chemosensory receptor genes invertebrates. Journal of Human Genetics, 51,505-517. |
[22] | Niimura Y, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One, 2,e708. |
[23] | Nozawa M, Nei M (2007) Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proceedings of the National Academy of Sciences, USA, 104,7122-7127. |
[24] | Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R, Carter NP, Lee C, Stone AC (2007) Diet and the evolution of human amylase gene copy number variation. Nature Genetics, 39,1256-1260. |
[25] | Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics, 14,817-818. |
[26] | Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen WW, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature, 444,444-454. |
[27] | Reese MG, Hartze G, Harris NL, Ohler U, Abril JF, Lewis SE (2000) Genome annotation assessment in Drosophila melanogaster. Genome Research, 10,483-501. |
[28] | Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM, O’Grady PM, Rohde C, Valente VL, Aguadé M, Anderson WW, Edwards K, Garcia AC, Goodman J, Hartigan J, Kataoka E, Lapoint RT, Lozovsky ER, Machado CA, Noor MA, Papaceit M, Reed LK, Richards S, Rieger TT, Russo SM, Sato H, Segarra C, Smith DR, Smith TF, Strelets V, Tobari YN, Tomimura Y, Wasserman M, Watts T, Wilson R, Yoshida K, Markow TA, Gelbart WM, Kaufman TC (2008) Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics, 179,1601-1655. |
[29] | Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R, Oseroff VV, Albertson DG, Pinkel D, Eichler EE (2005) Segmental duplications and copy-number variation in the human genome. The American Journal of Human Genetics, 77,78-88. |
[30] | Silva E, Au-Yeung HW, Van Goethem E, Burden J, Franc NC (2007) Requirement for a Drosophila E3-ubiquitin ligase in phagocytosis of apoptotic cells. Immunity, 27,585-596. |
[31] | Singh ND, Larracuente AM, Sackton TB, Clark AG (2009) Comparative genomics on the Drosophila phylogenetic tree. Annual Review of Ecology, Evolution, and Systematics, 40,459-480. |
[32] | Small KS, Brudno M, Hill MM, Sidow A (2007) Extreme genomic variation in a natural population. Proceedings of the National Academy of Sciences, USA, 104,5698-5703. |
[33] | Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, Crosby MA, Rasmussen MD, Roy S, Deoras AN, Ruby JG, Brennecke J, Harvard FlyBase curators, Berkeley Drosophila Genome Project, Hodges E, Hinrichs AS, Caspi A, Paten B, Park S, Han MV, Maeder ML, Polansky BJ, Robson BE, Aerts S, Helden J, Hassan B, Gilbert DG, Eastman DA, Rice M, Weir M, Hahn MW, Park Y, Pachter L, Kent WJ, Haussler D, Lai EC, Bartel DP, Hannon GJ, Kaufman TC, Eisen MB, Clark AG, Smith D, Celniker SE, Gelbart WM, Kellis M, Dewey CN (2007) Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 450,219-232. |
[34] | Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24,1596-1599. |
[35] | Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25,4876-4882. |
[36] | Xu G, Ma H, Nei M, Kong H (2009) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proceedings of the National Academy of Sciences, USA, 106,835-840. |
[37] | Zhou Q, Zhang G, Zhang Y, Xu S, Zhao R, Zhan Z, Li X, Ding Y, Yang S, Wang W (2008) On the origin of new genes in Drosophila. Genome Research, 18,1446-1455. |
/
〈 |
|
〉 |