[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
中国猫科动物研究与保护专题

六盘山华北豹的栖息地利用及保护建议

展开
  • 1.宁夏固原市六盘山林业局, 宁夏固原 756400
    2.复旦大学生命科学学院生物多样性与生态工程教育部重点实验室, 上海 200433
    3.中国猫科动物保护联盟, 北京 101121

收稿日期: 2022-06-21

  录用日期: 2022-09-22

  网络出版日期: 2022-09-28

基金资助

生物多样性与生态工程教育部重点实验室自主创新课题(2021-FDU-02)

Habitat use of the North China leopard (Panthera pardus japonensis) in the Liupanshan Mountains and its implications for conservation planning

Expand
  • 1. Ningxia Guyuan Liupanshan Forestry Bureau, Guyuan, Ningxia 756400
    2. Key Laboratory of Biodiversity and Ecological Engineering of Ministry of Education, School of Life Sciences, Fudan University, Shanghai 200433
    3. Chinese Felid Conservation Alliance, Beijing 101121

Received date: 2022-06-21

  Accepted date: 2022-09-22

  Online published: 2022-09-28

摘要

大型食肉动物对维持生态系统的结构和功能具有重要作用, 但大部分大型食肉动物处在持续的种群数量和分布面积下降之中, 面临着急迫的研究与保护需求。华北豹(Panthera pardus japonensis)是我国特有的豹亚种, 也是部分区域森林生态系统中仅存的大型食肉动物, 面临着生境破碎化等威胁。本研究使用红外相机调查了宁夏六盘山国家级自然保护区华北豹的分布, 通过构建占域模型分析了华北豹的栖息地利用, 预测了华北豹的适宜栖息地, 并评估了其生境破碎化格局。研究发现, 华北豹在六盘山的平均占域率约为0.135。华北豹偏好植被发育成熟、地势崎岖、温度较低、远离农田和公路的栖息地, 对于农田边缘和居民点等人类活动区域未显示出显著回避。研究识别的六盘山华北豹适宜栖息地主要沿六盘山东西两侧山脉分布, 55%的适宜栖息地斑块位于六盘山国家级自然保护区内。栖息地斑块面积平均为16 km2, 最大达214 km2, 约77%的栖息地斑块面积在10 km2以下。研究表明六盘山国家级自然保护区有效地保护了华北豹现有的适宜栖息地, 但仍存在栖息地破碎化和人类活动干扰等关键限制因素。建议通过栖息地改造、人类活动管理等方式增强六盘山华北豹适宜栖息地斑块连通性; 并通过推动华北豹跨省保护工作等举措促进华北豹种群扩散恢复。

本文引用格式

王双贵, 郭志宏, 顾伯健, 李天醍, 苏玉兵, 马伯丞, 管宏信, 黄巧雯, 王放, 张卓锦 . 六盘山华北豹的栖息地利用及保护建议[J]. 生物多样性, 2022 , 30(9) : 22342 . DOI: 10.17520/biods.2022342

Abstract

Aims: Large carnivores play important roles in ecosystem functions yet are globally threatened and require urgent research and conservation actions. The North China leopard (Panthera pardus japonensis) is a leopard subspecies that is endemic to China. It is the only remaining large carnivore in many forest ecosystems in northern China, and the North China leopard facing severe threats such as habitat degradation and fragmentation. This study aims to assess the habitat use of North China leopards in the Liupanshan Mountains.
Methods: This study was conducted in the Liupanshan Mountains. Infrared cameras were used to survey North China leopard distribution. We constructed occupancy models to analyze species habitat use. Based on species-environmental associations obtained from occupancy modeling, we identified suitable habitat patches, measured species association with human interference, and evaluated habitat fragmentation patterns.
Results: Occupancy modeling revealed that North China leopards occupied habitat patches with mature forest in ragged terrain. The occurrence probability was high in landscapes that were distant from croplands and roads, but the species did not demonstrate significant avoidance to farmland edges and residential areas. We identified 35 suitable habitat patches that were primarily distributed along the east and west ridges of the Liupanshan Mountains. The largest suitable habitat patch had an area of 214 km2, and the average area of suitable habitat patches were 16 km2. Approximately 55% of all suitable habitat patches were located within the Liupanshan National Nature Reserve boundary.
Conclusions: The primary conclusion of this study is that while the Liupanshan National Nature Reserve effectively conserves existing suitable habitat of North China leopards, the risks of habitat fragmentation and anthropogenic interference still exist. We suggest conservation actions such as habitat capacity building and a restriction of anthropogenic activity in protected area be taken to ensure the long-term persistence of North China leopards. Conservation efforts beyond provincial boundaries should be reinforced to promote the dispersal of North China leopards as well as population recovery. This study fills in the knowledge gaps left by the North China leopards ecological study in the Ningxia Hui Autonomous Region, and has the potential to support conservation planning in the Liupanshan Mountains as well as other regions.

[an error occurred while processing this directive]

参考文献

[1] Athreya V, Odden M, Linnell JDC, Krishnaswamy J, Karanth U (2013) Big cats in our backyards: Persistence of large carnivores in a human dominated landscape in India. PLoS ONE, 8, e57872.
[2] Athreya V, Srivathsa A, Puri M, Karanth KK, Kumar NS, Karanth KU (2015) Spotted in the news: Using media reports to examine leopard distribution, depredation, and management practices outside protected areas in southern India. PLoS ONE, 10, e0142647.
[3] Cao Y, Carver S, Yang R (2019) Mapping wilderness in China: Comparing and integrating Boolean and WLC approaches. Landscape and Urban Planning, 192, 103636.
[4] Chang BH (2013) The Survey and Analysis on Vertebrate Resources in National Nature Reserve in Liupan Mountain, Ningxia. PhD dissertation, Northwest University, Xi’an. (in Chinese with English abstract)
[4] [常保华 (2013) 宁夏六盘山国家级自然保护区脊椎动物资源调查分析. 博士学位论文, 西北大学, 西安.]
[5] Dai JH, Wang HL, Wang HJ, Liu YC, Shao LY (2013) Studies on landscape pattern of Liupan Mountains and the relationship with main climate factors. Geographical Research, 32, 2222-2232. (in Chinese with English abstract)
[5] [戴君虎, 王红丽, 王焕炯, 刘亚辰, 邵力阳 (2013) 六盘山景观格局及与主要气候因子的关系. 地理研究, 32, 2222-2232.]
[6] Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Daniel Kissling W, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30, 609-628.
[7] Enquist BJ, Abraham AJ, Harfoot MBJ, Malhi Y, Doughty CE (2020) The megabiota are disproportionately important for biosphere functioning. Nature Communications, 11, 699.
[8] Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soulé ME, Virtanen R, Wardle DA (2011) Trophic downgrading of planet earth. Science, 333, 301-306.
[9] Fick SE, Hijmans RJ (2017) WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.
[10] Fiske IJ, Chandler RB (2011) Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43(10), 1-23.
[11] Gamer M, Lemon J, Fellows I, Singh P (2019) irr: Various Coefficients of Interrater Reliability and Agreement. R package version 0.84.1. https://rdrr.io/cran/irr/. (accessed on 2022-04-18)
[12] Gao EH, Hu DF, Wang ZC, Bai QS (2007) An investigation of leopards in Liupan Mountain Nature Reserve. Forest Resource Management, (1), 80-82, 68. (in Chinese with English abstract)
[12] [郜二虎, 胡德夫, 王志臣, 白庆生 (2007) 宁夏六盘山自然保护区金钱豹资源初步调查. 林业资源管理, (1), 80-82, 68.]
[13] Hayward MW, Henschel P, O’Brien J, Hofmeyr M, Balme G, Kerley GIH (2006) Prey preferences of the leopard (Panthera pardus). Journal of Zoology, 270, 298-313.
[14] Hoeks S, Huijbregts MAJ, Busana M, Harfoot MBJ, Svenning JC, Santini L (2020) Mechanistic insights into the role of large carnivores for ecosystem structure and functioning. Ecography, 43, 1752-1763.
[15] Inskip C, Zimmermann A (2009) Human-felid conflict: A review of patterns and priorities worldwide. Oryx, 43, 18-34.
[16] Jacobson AP, Gerngross P, Lemeris JR, Schoonover RF, Anco C, Breitenmoser-Würsten C, Durant SM, Farhadinia MS, Henschel P, Kamler JF, Laguardia A, Rostro-García S, Stein AB, Dollar L (2016) Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ, 4, e1974.
[17] James G, Witten D, Hastie T, Tibshirani R (2021) An Introduction to Statistical Learning, 2nd edn. Springer, New York.
[18] Jiang ZG (2021) China’s Red List of Biodiversity•Vertebrates (Vol. I):Mammals (I). Science Press, Beijing. (in Chinese and in English)
[18] [蒋志刚 (2021) 中国生物多样性红色名录•脊椎动物(第一卷):哺乳动物(上册). 科学出版社, 北京.]
[19] Karanth KU, Sunquist ME (2000) Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India. Journal of Zoology, 250, 255-265.
[20] Kock N, Lynn GS (2012) Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. Journal of the Association for Information, 13, 546-580.
[21] Laguardia A, Kamler JF, Li S, Zhang CC, Zhou ZF, Shi K (2017) The current distribution and status of leopards Panthera pardus in China. Oryx, 51, 153-159.
[22] MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
[23] Malhi Y, Doughty CE, Galetti M, Smith FA, Svenning JC, Terborgh JW (2016) Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences, USA, 113, 838-846.
[24] Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG (2014) Where is positional uncertainty a problem for species distribution modelling? Ecography, 37, 191-203.
[25] Odden M, Athreya V, Rattan S, Linnell JDC (2014) Adaptable neighbours: Movement patterns of GPS-collared leopards in human dominated landscapes in India. PLoS ONE, 9, e112044.
[26] Odden M, Wegge P (2005) Spacing and activity patterns of leopards Panthera pardus in the Royal Bardia National Park, Nepal. Wildlife Biology, 11, 145-152.
[27] Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildlife Monographs, 62, 3-135.
[28] Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 20, 503-510.
[29] Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science, 343, 1241484.
[30] Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecology Letters, 12, 982-998.
[31] Rodríguez-Recio M, Burgos T, Krofel M, Lozano J, Moleón M, Virgós E (2022) Estimating global determinants of leopard home range size in a changing world. Animal Conservation, 1-11.
[32] Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: A review of the effects of carnivore removals on plants. The American Naturalist, 155, 141-153.
[33] Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, McHugh K, Hiraldo F (2008) Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annual Review of Ecology, Evolution, and Systematics, 39, 1-19.
[34] Simcharoen S, Barlow ACD, Simcharoen A, Smith JLD (2008) Home range size and daytime habitat selection of leopards in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Biological Conservation, 141, 2242-2250.
[35] Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: Visualizing classifier performance in R. Bioinformatics, 21, 3940-3941.
[36] Song DZ, Wang BP, Jiang JY, Wan SP, Cui SM, Wang TM, Feng LM (2014) Using camera trap to monitor a North Chinese leopard (Panthera pardus japonesis) population and their main ungulate prey. Biodiversity Science, 22, 733-736. (in Chinese with English abstract)
[36] [宋大昭, 王卜平, 蒋进原, 万绍平, 崔士明, 王天明, 冯利民 (2014) 山西晋中庆城林场华北豹及其主要猎物种群的红外相机监测. 生物多样性, 22, 733-736.]
[37] Stein AB, Athreya V, Gerngross P, Balme G, Henschel P, Karanth U, Miquelle D, Rostro-Garcia S, Kamler JF, Laguardia A, Khorozyan I, Ghoddousi A (2020) Panthera pardus (amended version of 2019 assessment). The IUCN Red List of Threatened Species 2020, 8235. https://www.iucnredlist.org/species/15954/163991139/. (accessed on 2022-01-05)
[38] Wang F, McShea WJ, Wang DJ, Li S (2015) Shared resources between giant panda and sympatric wild and domestic mammals. Biological Conservation, 186, 319-325.
[39] Wang R, Wang YQ, Yan HW (2021) Phenology zonal variation of vegetation and its response to climate change in Liupan Mountains. Geography and Geo-Information Science, 37(4), 90-98. (in Chinese with English abstract)
[39] [王荣, 王亚琴, 闫浩文 (2021) 六盘山山地植被物候地带性分异及其对气候变化的响应. 地理与地理信息科学, 37(4), 90-98.]
[40] Xiao WH, Shu ZF, Chen LJ, Yao WT, Ma Y, Zhang YM, Xiao ZS (2019) Using occupancy models in wildlife camera- trapping monitoring and the study case. Biodiversity Science, 27, 249-256. (in Chinese with English abstract)
[40] [肖文宏, 束祖飞, 陈立军, 姚武韬, 马勇, 张应明, 肖治术 (2019) 占域模型的原理及在野生动物红外相机研究中的应用案例. 生物多样性, 27, 249-256.]
[41] Yang H, Xie B, Zhao G, Gong Y, Mou P, Ge JP, Feng LM (2021) Elusive cats in our backyards: Persistence of the North Chinese leopard (Panthera pardus japonensis) in a human-dominated landscape in central China. Integrative Zoology, 16, 67-83.
[42] Yuan CX, Yu YC (2016) Endanger factors and protection countermeasure of rare and endangered plants of Liupan Mountain Natural Reserve. Journal of Agricultural Sciences, 37(4), 17-22. (in Chinese with English abstract)
[42] [袁彩霞, 余杨春 (2016) 六盘山国家级自然保护区珍稀濒危植物濒危原因分析及保护对策. 农业科学研究, 37(4), 17-22.]
[43] Zhu M, Zaman M, Wang M, Vitekere K, Ma J, Jiang G (2021) Population density and driving factors of North China leopards in Tie Qiao Shan Nature Reserve. Animals, 11(2), 1-12.
[44] Zhuo ZD, Zhang HJ (1987) Numerical classification for the forest vegetation of the Liupan Mountain. Acta Phytoecologica et Geobotanica Sinica, 11, 253-263. (in Chinese with English abstract)
[44] [卓正大, 张宏建 (1987) 六盘山森林植被的数量分类. 植物生态学与地植物学学报, 11, 253-263.]
文章导航

/

[an error occurred while processing this directive]