鲍虞园,李银康, 林吴颖, 周志琴, 肖晓波, 颉晓勇 (2023) 中国南海北部近海鲎资源调查及北部湾潮间带中华鲎幼鲎潜在栖息地评估. 生物多样性, 31, 22407. https://www.biodiversity-science.net/CN/10.17520/biods.2022407

附录3 MaxEnt模型中19个生物气候因子间的相关性。生物气候因子的含义见附录2。

Appendix 3 Correlation analysis of 19 bioclimatic variables in MaxEnt model. The meanings of the bioclimatic variables are shown in Appendix 2.

	bio 1	bio 2	bio 3	bio 4	bio 5	bio 6	bio 7	bio 8	bio 9	bio 10	bio 11	bio 12	bio 13	bio 14	bio 15	bio 16	bio 17	bio 18	bio 19
bio 1	1	0.629	0.714	-0.786	0.771	0.975	-0.929	-0.569	0.761	0.841	0.994	-0.679	-0.889	-0.744	-0.759	-0.855	-0.933	-0.868	-0.934
bio 2		1	0.664	-0.690	0.603	0.491	-0.407	-0.58	0.466	0.273	0.639	-0.247	-0.280	-0.432	-0.332	-0.206	-0.365	-0.231	-0.359
bio 3			1	-0.752	0.668	0.852	-0.802	-0.707	0.808	0.792	0.925	-0.668	-0.686	-0.800	-0.698	-0.828	-0.755	-0.649	-0.752
bio 4				1	-0.752	-0.965	0.923	0.650	-0.756	-0.764	-0.996	0.634	0.852	0.713	0.747	0.807	0.889	0.822	0.889
bio 5					1	0.938	-0.859	-0.547	0.847	0.896	0.965	-0.687	-0.710	-0.714	-0.709	-0.876	-0.909	-0.887	-0.910
bio 6						1	-0.983	-0.60	0.876	0.825	0.979	-0.722	-0.922	-0.759	-0.787	-0.896	-0.955	-0.906	-0.955
bio 7							1	0.598	-0.815	-0.746	-0.938	0.695	0.883	0.735	0.830	0.862	0.931	0.872	0.932
bio 8								1	-0.840	-0.194	-0.611	0.436	0.437	0.458	0.551	0.586	0.427	0.402	0.419
bio 9									1	0.660	0.548	-0.466	-0.699	-0.613	-0.796	-0.591	-0.575	-0.706	-0.556
bio 10										1	0.811	-0.698	-0.914	-0.751	-0.766	-0.912	-0.884	-0.913	-0.89
bio 11											1	-0.669	-0.884	-0.834	-0.868	-0.844	-0.916	-0.858	-0.917
bio 12												1	0.793	0.747	0.741	0.996	0.974	0.997	0.976
bio 13													1	0.838	0.767	0.995	0.960	0.997	0.965
bio 14														1	0.664	0.926	0.989	0.934	0.985
bio 15															1	0.949	0.879	0.952	0.884
bio 16																1	0.957	0.982	0.961
bio 17																	1	0.962	0.999
bio 18																		1	0.966
bio 19																			1