基于无人机影像与面向对象-深度学习的滨海湿地植物物种分类
|
黄雨菲, 路春燕, 贾明明, 王自立, 苏越, 苏艳琳
|
Plant species classification of coastal wetlands based on UAV images and object- oriented deep learning
|
Yufei Huang, Chunyan Lu, Mingming Jia, Zili Wang, Yue Su, Yanlin Su
|
|
表3 不同分类方法分类精度比较
|
Table 3 Comparison of classification accuracy of different methods
|
|
湿地植被类型 Wetland vegetation type | K最近邻 K-nearest neighbor | 决策树 Decision tree | 随机森林 Random forest | 贝叶斯 Bayes | U-net深度学习 U-net deep learning | 生产者精度 Producer accuracy (%) | 用户精度 User accuracy (%) | 生产者精度 Producer accuracy (%) | 用户精度 User accuracy (%) | 生产者精度 Producer accuracy (%) | 用户精度 User accuracy (%) | 生产者精度 Producer accuracy (%) | 用户精度 User accuracy (%) | 生产者精度 Producer accuracy (%) | 用户精度 User accuracy (%) | 短叶茳芏 Cyperus malaccensis | 60.00 | 92.31 | 80.95 | 100.00 | 90.48 | 100.00 | 71.43 | 100.00 | 75.00 | 93.75 | 三棱藨草 Scirpus mariqueter | 58.06 | 58.06 | 80.00 | 66.67 | 86.67 | 61.90 | 96.67 | 72.50 | 90.32 | 82.35 | 厚藤 Ipomoea pescaprae | 75.00 | 100.00 | 75.00 | 54.55 | 81.25 | 65.00 | 100.00 | 72.73 | 87.50 | 100.00 | 芦苇 Phragmites australis | 93.30 | 84.78 | 87.08 | 92.39 | 83.73 | 96.15 | 88.04 | 97.87 | 98.56 | 97.17 | 秋茄 Kandelia candel | 37.50 | 64.29 | 79.17 | 67.86 | 95.83 | 62.16 | 95.83 | 65.71 | 100.00 | 100.00 | 总体精度 Overall accuracy (%) | 82.00 | 84.67 | 85.33 | 89.00 | 95.67 | Kappa系数 Kappa coefficient | 0.60 | 0.70 | 0.73 | 0.79 | 0.91 |
|
|
|