基于无人机影像与面向对象-深度学习的滨海湿地植物物种分类
黄雨菲, 路春燕, 贾明明, 王自立, 苏越, 苏艳琳

Plant species classification of coastal wetlands based on UAV images and object- oriented deep learning
Yufei Huang, Chunyan Lu, Mingming Jia, Zili Wang, Yue Su, Yanlin Su
表3 不同分类方法分类精度比较
Table 3 Comparison of classification accuracy of different methods
湿地植被类型
Wetland vegetation
type
K最近邻
K-nearest neighbor
决策树
Decision tree
随机森林
Random forest
贝叶斯
Bayes
U-net深度学习
U-net deep learning
生产者精度
Producer accuracy
(%)
用户精度
User accuracy (%)
生产者精度
Producer accuracy
(%)
用户精度
User
accuracy
(%)
生产者精度
Producer accuracy
(%)
用户精度 User
accuracy
(%)
生产者精度
Producer accuracy
(%)
用户精度
User
accuracy
(%)
生产者精度
Producer accuracy
(%)
用户精度 User accuracy (%)
短叶茳芏
Cyperus malaccensis
60.00 92.31 80.95 100.00 90.48 100.00 71.43 100.00 75.00 93.75
三棱藨草
Scirpus mariqueter
58.06 58.06 80.00 66.67 86.67 61.90 96.67 72.50 90.32 82.35
厚藤
Ipomoea pescaprae
75.00 100.00 75.00 54.55 81.25 65.00 100.00 72.73 87.50 100.00
芦苇
Phragmites australis
93.30 84.78 87.08 92.39 83.73 96.15 88.04 97.87 98.56 97.17
秋茄
Kandelia candel
37.50 64.29 79.17 67.86 95.83 62.16 95.83 65.71 100.00 100.00
总体精度
Overall accuracy (%)
82.00 84.67 85.33 89.00 95.67
Kappa系数
Kappa coefficient
0.60 0.70 0.73 0.79 0.91