极小种群野生植物生存力分析: 方法、问题与展望
陈冬东,李镇清

Population viability analysis of Wild Plant with Extremely Small Populations (WPESP): Methods, problems and prospects
Dongdong Chen,Zhenqing Li
表2 种群生存力分析的主要方法
Table 2 General methods of population viability analysis (PVA)
模型 Models 具体内容 Details
生境模型 Habitat models
专家系统的概念模型
Conceptual models based on
expert opinion
通过专家评估种群所处环境的关键变量与种群生长适宜性的关系, 获取不同生境斑块的生境适宜性指数, 构建生境适宜性地图, 进而评估种群在整个分布区域的生存力。
Experts evaluate the relationship between the key variables of the environment and the growth suitability of the population, obtain the habitat suitability index of different habitat patches, construct a habitat suitability map, and then evaluate the population’s viability in the entire distribution area.
多元关联分析方法
Multivariate association
methods
多元关联分析整合多类型数据, 寻找种群生存力与各生境要素之间的相关关系, 还可运用多元距离度量创建生境地图, 评估种群生存力。常用多元关联方法有相关分析、典范对应分析(CCA)、生态位因子分析(ENFA)等。
Multivariate association analysis integrates multiple types of data to find the correlation between population viability and habitat elements. Multivariate distance measures can also be used to create habitat maps to assess population viability. Commonly used multiple correlation methods including correlation analysis, canonical correspondence analysis (CCA), and ecological niche factor analysis (ENFA).
回归分析
Regression analysis
构建种群统计学特征与环境变量之间的线性或非线性关系, 寻找不同变量对种群特征的影响大小。回归分析主要包括广义线性模型(GLM)和广义可加模型(GAM)。
Regression analysis constructs a linear or non-linear relationship between population demographics and environmental variables, and evaluates the effects of multiple variables on population viability. Regression analysis mainly includes generalized linear model (GLM) and generalized additive model (GAM).
种群统计模型 Population demographic models
扩散近似模型
Diffusion approximation
model
一种非结构的种群生存力分析方法。扩散近似模型利用时间尺度上的种群数量变化来估计种群随机增长率的均值及方差, 在此基础之上评估种群的维持概率。
An unstructured PVA approach. Diffusion approximation model uses a time series of population counts to estimate the mean and variance of the stochastic population growth rate, then predict the probability of persistence.
矩阵模型
Matrix model
植物种群生存力分析最常用的模型。此类模型关注不同年龄/大小的个体的繁殖率、死亡率的差异。矩阵模型通过存活率和繁殖率计算不同阶段间的转移概率, 可描述不同阶段的个体数量变化, 进而预测种群生存力。
The most commonly used model for plant PVA. Matrix model accounts for difference in rates of reproduction and mortality among individuals of different ages or sizes. Matrix model can describe how the number of individuals in each class changes from one year to the next by using the vital rates to calculate transition probabilities, and then predict population viability.
积分投影模型
Integral projection model
(IPM)
利用个体大小、年龄、出生、死亡等种群特征来预测种群动态。与矩阵模型受限于生活史阶段划分误差不同, 积分投影模型可通过积分处理更多的、离散的种群状态及时空尺度的环境变化。
IPM uses population characteristics such as individual size, age, birth and mortality to predict population dynamics. Unlike the matrix model, IPM can accommodate more, discrete population stages and environmental changes in space and time through integration.
遗传学模型 Genetic model
近交-种群大小模型
Inbreeding-population
size model
基于种群大小、遗传多样性以及适合度, 构建近交衰退与种群大小之间的迭代模型, 进而预测种群动态。
This model predicts population dynamics by constructing an iterative model between inbreeding decline and population size based on population size, genetic diversity, and fitness.