[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]增温对东北温带次生林草本群落季节动态的影响
收稿日期: 2023-02-21
录用日期: 2023-03-28
网络出版日期: 2023-05-19
基金资助
国家重点研发计划(2022YFF130050103);国家自然科学基金(31670632);国家自然科学基金(32001121)
Effects of simulated warming on seasonal dynamics of herbaceous diversity in temperate secondary forests in Northeast China
Received date: 2023-02-21
Accepted date: 2023-03-28
Online published: 2023-05-19
主要由人类活动造成的气候变暖导致陆地植物多样性和群落结构发生改变, 森林草本层作为森林生态系统植物多样性的主要贡献者, 对气候变暖的响应十分显著, 而目前仍缺乏相关研究。本研究基于中国科学院清原森林生态系统观测研究站搭建的红外线模拟增温平台, 分析了表层土壤(0-10 cm)增温2℃条件下林下草本层群落在生长季受到的影响。结果表明: 增温第4-5年间, 对照和增温处理下的草本植物多样性无显著差异, 但增温处理下各季节的多样性指数均较对照处理呈现减小趋势; 对照和增温处理下的草本层群落总体盖度和多度无显著差异, 但群落组成及结构发生显著改变。不同优势种对增温的响应趋势不同。年优势种中, 山茄子(Brachybotrys paridiformis)的响应最显著, 其重要值、多度和盖度在各季节均显著增加, 而龙头草(Meehania henryi)在各季节显著减少, 白花碎米荠(Cardamine leucantha)和荷青花(Hylomecon japonica)的响应不显著; 季节优势种中, 春季优势种单花韭(Allium monanthum)重要值显著降低, 五福花(Adoxa moschatellina)重要值显著增加, 夏季优势种珠芽艾麻(Laportea bulbifera)无显著响应。综上, 增温对该区森林草本植物多样性无明显影响, 但可能导致某些物种物候期提前, 改变群落内物种对光等资源的竞争关系, 或者影响某些物种的功能性状, 显著改变不同季节部分优势种的重要值、多度和盖度, 导致草本层群落组成和结构发生变化。
陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高 . 增温对东北温带次生林草本群落季节动态的影响[J]. 生物多样性, 2023 , 31(5) : 23059 . DOI: 10.17520/biods.2023059
Aims: Climate warming mainly caused by human activities has led to changes in terrestrial plant diversity and community structure. Forest herb layer, as the main contributor of plant diversity in forest ecosystem, has a significant response to climate warming, however, relevant studies are still lacking. This study explores the changes of herbaceous community in temperate forests in the context of climate warming, including diversity, community structure, and species composition, in order to provide scientific basis for the response of forest herbaceous layer to climate warming.
Method: This experiment was carried out in 2021 and 2022 on a simulated warming platform built by Qingyuan Forest Ecosystem Research Station of Chinese Academy of Sciences, which used an infrared ray to warm the surface soil by 2℃ during the growing season.
Results: The results showed that there was no significant change in herbaceous diversity under warming conditions, but the community diversity index of each season showed a decreasing trend. After warming, the overall coverage and abundance of the herbaceous community did not change significantly, but the composition and structure of the herbaceous community changed significantly. Specifically, the response trend of different dominant species to warming was different. Among the dominant species throughout the year, the response of Brachybotrys paridiformis was the most obvious, as its importance value, abundance, and coverage increased significantly, while that of Meehania henryi decreased significantly. Cardamine leucantha and Hylomecon japonica had no significant response. Lastly, the importance value of Allium monanthum, which is the seasonal dominant species, was significantly decreased, while that of Adoxa moschatellina was significantly increased.
Conclusion: Warming has no significant effect on herbaceous diversity in the forest in this study, but it may lead to the advancement of the phenological period of some species, change the competition between species in the community for resources such as light, or affect the development of functional traits of some species. Furthermore, it may change the importance value, abundance, and coverage of dominant species in different seasons, and lead to significant changes in the composition and structure of the herbaceous community.
[1] | Blondeel H, Perring MP, De Lombaerde E, Depauw L, Landuyt D, Govaert S, Maes SL, Vangansbeke P, De Frenne P, Verheyen K (2020a) Individualistic responses of forest herb traits to environmental change. Plant Biology, 22, 601-614. |
[2] | Blondeel H, Perring MP, Depauw L, De Lombaerde E, Landuyt D, De Frenne P, Verheyen K (2020b) Light and warming drive forest understorey community development in different environments. Global Change Biology, 26, 1681-1696. |
[3] | Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Patterson CM (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere, 6, art130. |
[4] | Climate Change Centre of China Meteorological Administration (2021) Blue Book on Climate Change in China (2021). Science Press, Beijing. (in Chinese) |
[4] | [中国气象局气候变化中心 (2021) 中国气候变化蓝皮书 (2021). 科学出版社, 北京.] |
[5] | De Frenne P, De Schrijver A, Graae BJ, Gruwez R, Tack W, Vandelook F, Hermy M, Verheyen K (2010) The use of open-top chambers in forests for evaluating warming effects on herbaceous understorey plants. Ecological Research, 25, 163-171. |
[6] | De Pauw K, Sanczuk P, Meeussen C, Depauw L, De Lombaerde E, Govaert S, Vanneste T, Brunet J, Cousins S, Gasperini C, Hedwall PO, Iacopetti G, Lenoir J, Plue J, Selvi F, Spicher F, Uria-Diez J, Verheyen K, Vangansbeke P, De Frenne P (2021) Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytologist, 233, 219-235. |
[7] | Duan YH, Liu DW, Huang K, Shou WK, Zhu FF, Liu YQ, Yu HM, Gundersen P, Kang RH, Wang A, Han SJ, Wang ZM, Zhu JJ, Zhu WX, Fang YT (2022) Design and performance of an ecosystem-scale forest soil warming experiment with infrared heater arrays. Methods in Ecology and Evolution, 13, 2065-2077. |
[8] | Elmendorf SC, Henry GHR, Hollister RD, Bj?rk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jónsdóttir IS, Wookey PA (2012) Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecology Letters, 15, 164-175. |
[9] | Fu YH, Zhao HF, Piao SL, Peaucelle M, Peng SS, Zhou GY, Ciais P, Huang MT, Menzel A, Pe?uelas J, Song Y, Vitasse Y, Zeng ZZ, Janssens IA (2015) Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526, 104-107. |
[10] | Gao T, Yu LZ, Yu FY, Wang XC, Yang K, Lu DL, Li XF, Yan QL, Sun YR, Liu LF, Xu S, Zhen XJ, Ni ZD, Zhang JX, Wang GF, Wei XH, Zhou XH, Zhu JJ (2020) Functions and applications of multi-tower platform of Qingyuan Forest Ecosystem Research Station of Chinese Academy of Sciences. Chinese Journal of Applied Ecology, 31, 695-705. (in Chinese with English abstract) |
[10] | [高添, 于立忠, 于丰源, 王兴昌, 杨凯, 卢德亮, 李秀芬, 闫巧玲, 孙一荣, 刘利芳, 徐爽, 甄晓杰, 倪震东, 张金鑫, 王高峰, 魏晓华, 周新华, 朱教君 (2020) 中国科学院清原森林生态系统观测研究站塔群平台的功能和应用. 应用生态学报, 31, 695-705.] |
[11] | Gilliam FS (2007) The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience, 57, 845-858. |
[12] | Govaert S, Vangansbeke P, Blondeel H, De Lombaerde E, Verheyen K, De Frenne P (2021a) Forest understorey plant responses to long-term experimental warming, light and nitrogen addition. Plant Biology, 23, 1051-1062. |
[13] | Govaert S, Vangansbeke P, Blondeel H, Steppe K, Verheyen K, De Frenne P (2021b) Rapid thermophilization of understorey plant communities in a 9 year-long temperate forest experiment. Journal of Ecology, 109, 2434-2447. |
[14] | IPCC (2021) The physical science basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelek?i O, Yu R, Zhou B). Cambridge University Press, Cambridge. |
[15] | Ji Y, Chen SD, Xiong DC, Xu C, Liu XF, He ZM, Yang ZJ (2022) Effects of short-term warming on species diversity of understory vegetation in subtropical evergreen broad-leaved forest. Journal of Tropical and Subtropical Botany, 31(2), 153-162. (in Chinese with English abstract) |
[15] | [籍烨, 陈仕东, 熊德成, 胥超, 刘小飞, 何宗明, 杨智杰 (2022) 短期增温对亚热带常绿阔叶林林下植被物种多样性的影响. 热带亚热带植物学报, 31(2), 153-162.] |
[16] | Jia SH, Wang XG, Hao ZQ, Bagchi R (2022) The effects of natural enemies on herb diversity in a temperate forest depend on species traits and neighbouring tree composition. Journal of Ecology, 110, 2615-2627. |
[17] | Jiang YB, Fan M, Zhang YJ (2017) Effect of short-term warming on plant community features of alpine meadow in Northern Tibet. Chinese Journal of Ecology, 36, 616-622. (in Chinese with English abstract) |
[17] | [姜炎彬, 范苗, 张扬建 (2017) 短期增温对藏北高寒草甸植物群落特征的影响. 生态学杂志, 36, 616-622.] |
[18] | Landuyt D, De Lombaerde E, Perring MP, Hertzog LR, Ampoorter E, Maes SL, De Frenne P, Ma SY, Proesmans W, Blondeel H, Sercu BK, Wang B, Wasof S, Verheyen K (2019) The functional role of temperate forest understorey vegetation in a changing world. Global Change Biology, 25, 3625-3641. |
[19] | Li YH (2014) Responses of Plant Community Structure and Function to Warming and Nitrogen Addition in a Desert Steppe of Inner Mongolia. PhD dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract) |
[19] | [李元恒 (2014) 内蒙古荒漠草原植物群落结构和功能对增温和氮素添加的响应. 博士学位论文, 内蒙古农业大学, 呼和浩特.] |
[20] | Liu XD (2020) Responses of Plant Communities to Climatic Warming and the Mechanisms in a Desert Steppe. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[20] | [刘晓迪 (2020) 荒漠草原植物群落对气候变暖的响应及其机制. 博士学位论文, 中国科学院植物研究所, 北京.] |
[21] | Ma L, Zhang Q, Zhang ZH, Guo J, Yang XY, Zhou BR, Deng YF, Wang F, She YD, Zhou HK (2020) Effects of gradient warming on species diversity and biomass in alpine meadows. Acta Agrestia Sinica, 28, 1395-1402. (in Chinese with English abstract) |
[21] | [马丽, 张骞, 张中华, 郭婧, 杨晓渊, 周秉荣, 邓艳芳, 王芳, 佘延娣, 周华坤 (2020) 梯度增温对高寒草甸物种多样性和生物量的影响. 草地学报, 28, 1395-1402.] |
[22] | Niu SL, Wan SQ (2008) Warming changes plant competitive hierarchy in a temperate steppe in northern China. Journal of Plant Ecology, 1, 103-110. |
[23] | Piao SL, Liu Q, Chen AP, Janssens IA, Fu YS, Dai JH, Liu LL, Lian X, Shen MG, Zhu XL (2019) Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25, 1922-1940. |
[24] | Pielou EC (1975) Ecological diversity. Limnology Oceanography, 22, 172-174. |
[25] | Salick J, Fang ZD, Hart R (2019) Rapid changes in eastern Himalayan alpine flora with climate change. Botany, 106, 520-530. |
[26] | Shi Z, Sherry R, Xu X, Hararuk O, Souza L, Jiang LF, Xia JY, Liang JY, Luo YQ (2015) Evidence for long-term shift in plant community composition under decadal experimental warming. Journal of Ecology, 103, 1131-1140. |
[27] | Spicer ME, Radhamoni HVN, Duguid MC, Queenborough SA, Comita LS (2022) Herbaceous plant diversity in forest ecosystems: Patterns, mechanisms, and threats. Plant Ecology, 223, 117-129. |
[28] | Valladares F, Laanisto L, Niinemets ü, Zavala MA (2016) Shedding light on shade: Ecological perspectives of understorey plant life. Plant Ecology & Diversity, 9, 237-251. |
[29] | Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland ?, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences, USA, 103, 1342-1346. |
[30] | Wang JM, Xi ZX, He XJ, Chen SS, Rossi S, Smith NG, Liu JQ, Chen L (2021) Contrasting temporal variations in responses of leaf unfolding to daytime and nighttime warming. Global Change Biology, 27, 5084-5093. |
[31] | Wang Q, Zhang ZH, Du R, Wang SP, Duan JC, Iler AM, Piao SL, Luo CY, Jiang LL, Lü WW, Zhang LR, Meng FD, Ji SN, Li YM, Li BW, Liu PP, Dorji T, Wang ZZ, Li YN, Du MY, Zhou HK, Zhao XQ, Wang YF (2019) Richness of plant communities plays a larger role than climate in determining responses of species richness to climate change. Journal of Ecology, 107, 1944-1955. |
[32] | Wasof S, Lenoir J, Hattab T, Jamoneau A, Gallet-Moron E, Ampoorter E, Saguez R, Bennsadek L, Bertrand R, Valdès A, Verheyen K, Decocq G (2018) Dominance of individual plant species is more important than diversity in explaining plant biomass in the forest understorey. Journal of Vegetation Science, 29, 521-531. |
[33] | Whittaker RH (1972) Evolusion and measurement of species diversity. Taxon, 21, 213-251. |
[34] | Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature, 485, 494-497. |
[35] | Xia L, Zhang SR, Liu PP, Lü WW, Hong H, Zhou Y, Li BW, Wang Q, A W, Jiang LL, Dorji T, Wang SP, Zhang LR (2022) Effects of climate change and N deposition on plant diversity in grassland in China. Grassland and Turf, 42, 158-165. (in Chinese with English abstract) |
[35] | [夏露, 张苏人, 刘培培, 吕汪汪, 洪欢, 周阳, 李博文, 王奇, 阿旺, 姜丽丽, 斯确多吉, 汪诗平, 张立荣 (2022) 增温和增/减水及氮沉降对中国草地植物多样性影响的研究进展. 草原与草坪, 42, 158-165.] |
[36] | Xu MH, Du R, Yang XH, Yang XY, Yu XL (2021) Response of plants to simulated warming in under-canopy herbaceous layers on the guancen mountain. Chinese Wild Plant Resources, 40(10), 45-52. (in Chinese with English abstract) |
[36] | [徐满厚, 杜荣, 杨晓辉, 杨晓艳, 于秀立 (2021) 管涔山林下草本层植物对模拟增温的响应. 中国野生植物资源, 40(10), 45-52.] |
[37] | Xu MH, Li XL (2021) Review of response of grassland community stability to global warming based on correlation between species biodiversity and biomass. Acta Botanica Boreali-Occidentalia Sinica, 41, 348-358. (in Chinese with English abstract) |
[37] | [徐满厚, 李晓丽 (2021) 基于物种多样性与生物量关系的草地群落稳定性对全球变暖的响应研究进展. 西北植物学报, 41, 348-358.] |
[38] | Xu MM, Dong Q, Yu JG, Xuan ZL, Xia FC (2016) Biomass distribution research of florescence organs of Meehania fargesii. Journal of Jilin Forestry Science and Technology, 45(2), 19-23. (in Chinese with English abstract) |
[38] | [徐敏敏, 董琼, 于建国, 轩志龙, 夏富才 (2016) 荨麻叶龙头草花期器官生物量分配研究. 吉林林业科技, 45(2), 19-23.] |
[39] | Yang XY, Zhang SX, Wen J, Xu MH (2018) Spatial pattern of herbaceous plant species diversity and its changes due to simulated warming in the forest community of the Lüliang Mountains. Acta Ecologica Sinica, 38, 6642-6654. (in Chinese with English abstract) |
[39] | [杨晓艳, 张世雄, 温静, 徐满厚 (2018) 吕梁山森林群落草本层植物物种多样性的空间格局及其对模拟增温的响应. 生态学报, 38, 6642-6654.] |
[40] | Yang Y, Halbritter AH, Klanderud K, Telford RJ, Wang GX, Vandvik V (2018) Transplants, open top chambers (OTCs) and gradient studies ask different questions in climate change effects studies. Frontiers in Plant Science, 9, 1574. |
[41] | Zhang CH, Willis CG, Klein JA, Ma Z, Li JY, Zhou HK, Zhao XQ (2017) Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet Plateau. Biological Conservation, 213, 218-224. |
[42] | Zhu JJ, Mao ZH, Hu LL, Zhang JX (2007) Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China. Journal of Forest Research, 12, 403-416. |
[43] | Zong N, Chai X, Shi PL, Jiang J, Niu B, Zhang XZ, He YT (2016) Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China. Chinese Journal of Applied Ecology, 27, 3739-3748. (in Chinese with English abstract) |
[43] | [宗宁, 柴曦, 石培礼, 蒋婧, 牛犇, 张宪洲, 何永涛 (2016) 藏北高寒草甸群落结构与物种组成对增温与施氮的响应. 应用生态学报, 27, 3739-3748.] |
/
〈 |
|
〉 |