[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究报告: 植物多样性

无机肥料是青海塔拉滩光伏电站植被恢复过程中的限制性因子

  • 刘向 ,
  • 张鹏 ,
  • 刘建全
展开
  • 兰州大学草地农业生态系统国家重点实验室/生态学院, 兰州 730000

收稿日期: 2022-03-04

  录用日期: 2022-04-09

  网络出版日期: 2022-04-12

基金资助

兰州大学中央高校基本科研业务费项目“西北荒漠和高寒地区光伏电站下植被和土壤固碳技术研究”(lzujbky-2021-sp51)

Inorganic fertilizers are limiting factors of vegetation restoration of Qinghai Tala Shoal Photovoltaic Power Station

  • Xiang Liu ,
  • Peng Zhang ,
  • Jianquan Liu
Expand
  • State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000

Received date: 2022-03-04

  Accepted date: 2022-04-09

  Online published: 2022-04-12

摘要

青藏高原因其独特的地理单元、广袤的荒漠及丰富的太阳能资源(太阳辐射强且多、日照时间长), 在光伏电站建设及“碳中和”实现中具有重要的区位优势。光伏电站建设能够改变局域环境进而影响植被生长, 但光伏电站植被恢复的关键限制性因子尚不清楚。本研究以青藏高原东缘塔拉滩荒漠草原光伏电站为研究对象, 探究益生微生物、无机肥料(氮肥和磷肥)和微量元素3种限制性因子及其交互效应对光伏电站光伏电板下植被特征(群落盖度、地上生物量和物种丰富度)的短期影响。研究结果表明: (1)添加无机肥料显著增加群落盖度(F1,5 = 40.598; P < 0.001), 降低物种丰富度(F1,5 = 5.133; P = 0.026), 但对地上生物量无显著影响(F1,5 = 0.279; P = 0.599); 而微生物菌剂和微量元素复合剂则对群落盖度、地上生物量和物种丰富度均无显著影响; (2)多重比较证实无机肥料、微生物菌剂和微量元素复合剂的混合添加使得光伏电板外和光伏电板下群落盖度均达到各实验处理组合中的最大值, 最利于植被恢复。本研究表明无机肥料是青海塔拉滩光伏电站建设后限制植被生长的重要因子, 但微生物菌剂和微量元素在促进植被生长方面仍然发挥着不可替代的作用。因此, 它们一起添加更能有效加速荒漠生态系统光伏电板下的植被恢复。

本文引用格式

刘向 , 张鹏 , 刘建全 . 无机肥料是青海塔拉滩光伏电站植被恢复过程中的限制性因子[J]. 生物多样性, 2022 , 30(5) : 22100 . DOI: 10.17520/biods.2022100

Abstract

Amis: With its unique geographical condition, vast desert and abundant solar energy resources (strong and abundant solar radiation and long sunshine duration), the Qinghai-Tibet Plateau comprises an important region with multiple advantages in constructing photovoltaic power stations for realizing carbon neutrality. However, the key factors that limit vegetation restoration after such station construction remain unknown. In this study, we aimed to examine how three factors (inorganic fertilizer, microbial inoculum and trace element) affect vegetation restoration under photovoltaic panels.

Methods: Experiments were conducted in the Qinghai Tala Shoal desert steppe ecosystem. A full-factor interaction experiment was carried out to explore the short-term effect of limiting factors including microbial inoculum, inorganic fertilizers (nitrogen and phosphorus) and trace elements, as well as their interaction on the vegetation characteristics (including community cover, aboveground biomass and species richness).

Results: The inorganic fertilizers significantly increased community cover (F1,5 = 40.598; P < 0.001), decreased plant species richness (F1,5 = 5.133; P = 0.026), but had no significant effect on aboveground biomass (F1,5 = 0.279; P = 0.599). Based on Tukey’s honestly significant difference test, the mixed addition of inorganic fertilizers, microbial inoculants and trace elements reached the maximum value in community cover for both under and outside the photovoltaic panels.

Conclusions: These experiments suggested that inorganic fertilizer is a major factor limiting vegetation restoration under photovoltaic panels, while microbial inoculants and trace elements also play irreplaceable roles in promoting vegetation restoration. Therefore, all of them should be together supplemented for effectively restoring vegetation under photovoltaic panels.

[an error occurred while processing this directive]

参考文献

[1] Adeh EH, Selker JS, Higgins CW (2018) Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE, 13, e0203256.
[2] Armstrong A, Ostle NJ, Whitaker J (2016) Solar park microclimate and vegetation management effects on grassland carbon cycling. Environmental Research Letters, 11, 074016.
[3] Armstrong A, Waldron S, Whitaker J, Ostle NJ (2014) Wind farm and solar park effects on plant-soil carbon cycling: Uncertain impacts of changes in ground-level microclimate. Global Change Biology, 20, 1699-1706.
[4] Borer ET, Harpole WS, Adler PB, Arnillas CA, Bugalho MN, Cadotte MW, Caldeira MC, Campana S, Dickman CR, Dickson TL, Donohue I, Eskelinen A, Firn JL, Graff P, Gruner DS, Heckman RW, Koltz AM, Komatsu KJ, Lannes LS, MacDougall AS, Martina JP, Moore JL, Mortensen B, Ochoa-Hueso R, Olde Venterink H, Power SA, Price JN, Risch AC, Sankaran M, Schütz M, Sitters J, Stevens CJ, Virtanen R, Wilfahrt PA, Seabloom EW (2020) Nutrients cause grassland biomass to outpace herbivory. Nature Communications, 11, 6036.
[5] Chalcraft DR, Wilsey BJ, Bowles C, Willig MR (2009) The relationship between productivity and multiple aspects of biodiversity in six grassland communities. Biodiversity and Conservation, 18, 91-104.
[6] Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017) Beyond nutrients: A meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology, 98, 2111-2119.
[7] Eisenhauer N, Schulz W, Scheu S, Jousset A (2013) Niche dimensionality links biodiversity and invasibility of microbial communities. Functional Ecology, 27, 282-288.
[8] Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature, 446, 791-793.
[9] Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
[10] He J-S, Bu HY, Hu XW, Feng YH, Li SL, Zhu JX, Liu GH, Wang YR, Nan ZB (2020) Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach. Chinese Science Bulletin, 65, 3898-3908. (in Chinese with English abstract)
[10] [贺金生, 卜海燕, 胡小文, 冯彦皓, 李守丽, 朱剑霄, 刘国华, 王彦荣, 南志标 (2020) 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 65, 3898-3908.]
[11] Hong J, Kim J (2008) Simulation of surface radiation balance on the Tibetan Plateau. Geophysical Research Letters, 35, L08814.
[12] Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences, USA, 110, 11911-11916.
[13] Li QS (2021) Discussion on the path of China’s energy transformation under the goal of carbon neutrality. China Coal, 47(8), 1-7. (in Chinese with English abstract)
[13] [李全生 (2021) 碳中和目标下我国能源转型路径探讨. 中国煤炭, 47(8), 1-7.]
[14] Li Y, Kalnay E, Motesharrei S, Rivas J, Kucharski F, Kirk-Davidoff D, Bach E, Zeng N (2018) Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science, 361, 1019-1022.
[15] Liu Y, Zhang RQ, Huang Z, Cheng Z, López-Vicente M, Ma XR, Wu GL (2019) Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem. Land Degradation & Development, 30, 2177-2186.
[16] Liu Y, Zhang RQ, Ma XR, Wu GL (2020) Combined ecological and economic benefits of the solar photovoltaic industry in arid sandy ecosystems. Journal of Cleaner Production, 262, 121376.
[17] Qinghai Provincial Bureau of Statistics (2021) Statistical Communiqué of the Qinghai Province on the 2020 National Economic and Social Development. (in Chinese)
[17] [青海省统计局 (2021) 青海省2020年国民经济和社会发展统计公报.] http://www.gzswzys.gov.cn/Content.aspx?id=f6f3abe7-e671-4189-8133-dcf1ea0fed5b. (accessed on 2022-05-08)
[18] Sun HL, Zheng D (1998) Formation, Evolution and Development of the Qinghai-Tibet Plateau. Guangdong Science and Technology Press, Guangzhou. (in Chinese)
[18] [孙鸿烈, [郑度 (1998) 青藏高原形成演化与发展. 广东科技出版社, 广州.]
[19] Tian QY, Liu NN, Bai WM, Li LH, Chen JQ, Reich PB, Yu Q, Guo DL, Smith MD, Knapp AK, Cheng WX, Lu P, Gao Y, Yang A, Wang TZ, Li X, Wang ZW, Ma YB, Han XG, Zhang WH (2016) A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74.
[20] Veen GF, van der Putten WH, Bezemer TM (2018) Biodiversity-ecosystem functioning relationships in a long-term non-weeded field experiment. Ecology, 99, 1836-1846.
[21] Wang HH, Yue C, Mao QQ, Zhao J, Ciais P, Li W, Yu Q, Mu XM (2020) Vegetation and species impacts on soil organic carbon sequestration following ecological restoration over the Loess Plateau, China. Geoderma, 371, 114389.
[22] Wang XM (2021) Desert Ecosystem Maps in the Tibetan Plateau. Sinomap Press, Beijing. (in Chinese)
[22] [王训明 (2021) 青藏高原荒漠生态系统系列图. 中国地图出版社, 北京.]
[23] Wang XQ, Yin SL, Yang ZW, Lu Q, Yang HH, Chen Q (2015) Community composition and soil properties of different grassland types on the Tala Shoal in Gonghe Basin. Forest Research, 28, 346-351. (in Chinese with English abstract)
[23] [王学全, 尹书乐, 杨占武, 卢琦, 杨恒华, 陈琦 (2015) 共和盆地塔拉滩不同类型草地群落组成与土壤特性. 林业科学研究, 28, 346-351.]
[24] Xiao Y, Liu X, Zhang L, Song ZP, Zhou SR (2021) The allometry of plant height explains species loss under nitrogen addition. Ecology Letters, 24, 553-562.
[25] Yang L, Wei W, Chen LD, Chen WL, Wang JL (2014) Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. Catena, 115, 123-133.
[26] Yue SJ, Guo MJ, Zou PH, Wu W, Zhou XD (2021) Effects of photovoltaic panels on soil temperature and moisture in desert areas. Environmental Science and Pollution Research, 28, 17506-17518.
文章导航

/

[an error occurred while processing this directive]