[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
综述

长江流域农作物起源及其与生物多样性特征的关联

  • 赵耀 ,
  • 陈家宽
展开
  • 1 南昌大学生命科学研究院流域生态学研究所, 南昌 330031
    2 复旦大学生物多样性与生态工程教育部重点实验室, 上海 200438
# 共同第一作者

收稿日期: 2017-09-14

  录用日期: 2018-02-06

  网络出版日期: 2018-09-11

基金资助

国家自然科学青年基金(31600293)

The origin of crops in the Yangtze River Basin and its relevance for biodiversity

  • Zhao Yao ,
  • Chen Jiakuan
Expand
  • 1 Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang 330031
    2 Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200438
# Co-first authors

Received date: 2017-09-14

  Accepted date: 2018-02-06

  Online published: 2018-09-11

摘要

长江流域的农耕文明是中华文明的重要组成部分。作为世界著名的农作物起源中心之一, 长江流域拥有丰富的生物多样性, 孕育了大量的栽培植物。本文梳理了起源于长江流域的农作物的资料以及新石器时代文化遗址的植物遗存信息; 结合对长江流域的自然环境特征与全新世以来植被变化的总结, 尝试厘清长江流域对植物资源利用的动态变化, 探讨本地栽培植物与生物多样性的关联。结果表明长江流域农耕文明以稻作为最主要的生产方式, 驯化了大量果树与水生蔬菜, 反映出对本地亚热带常绿阔叶林与湿地的依赖与适应。与其他流域相比, 长江流域具有相对优越的生态要素配置, 其驯化作物类型表现出典型的亚热带湿润森林植被区特征。研究长江流域农作物驯化相关的自然与人类因素, 有助于我们更好地把握长江流域农耕文明的起源。本文不但可为长江流域植物遗传资源的保护与开发提供参考, 而且对于推进长江流域的生态文明建设和可持续发展具有指导作用。

本文引用格式

赵耀 , 陈家宽 . 长江流域农作物起源及其与生物多样性特征的关联[J]. 生物多样性, 2018 , 26(4) : 333 -345 . DOI: 10.17520/biods.2017251

Abstract

The agricultural civilization that originated in the Yangtze River Basin is an important part of Chinese civilization. Being one of the world-famous crop origin centers, the Yangtze River Basin is rich in biodiversity, and has bred many cultivated plants. This review has collected data of crops that originated in the Yangtze River Basin and information of plant remains found in Neolithic archaeological sites. By summarizing the environmental features and tracking the changes of vegetation since the Holocene in the Yangtze River Basin, we attempt to dissect the dynamics of plant use in this area and investigate the relationship between local cultivated plants and biodiversity. Our results indicate the agricultural civilization in the Yangtze River Basin greatly relied on rice production, and domesticated a large amount of fruit and aquatic vegetable crops, which reflects the adaptation and dependence to local subtropical evergreen broad-leaved forests and wetlands. When compared to other basins, the Yangtze River Basin is advantageous in allocation of ecological factors, and the characteristic of domesticated crops shows a typical feature of subtropical humid forest vegetation areas. Studying the natural and human factors related to crop domestication can help us to better understand the origin of agriculture civilization in the Yangtze River Basin. This work not only provides a reference for the conservation and utilization of plant genetic resources, but also plays a guiding role in promoting the construction of ecological civilization and sustainable development in the Yangtze River Basin.

[an error occurred while processing this directive]

参考文献

[1] Araus JL, Ferrio JP, Voltat J, Aguilera M, Buxo R (2014) Agronomic conditions and crop evolution in ancient Near East agriculture. Nature Communications, 5, 3953.
[2] Arranz-Otaegui A, Lopez-Saez JA, Araus JL, Portillo M, Balbo A, Iriarte E, Gourichon L, Braemer F, Zapata L, Ibanez JJ (2017) Landscape transformations at the dawn of agriculture in southern Syria (10.7-9.9 ka cal. BP): Plant-specific responses to the impact of human activities and climate change. Quaternary Science Reviews, 158, 145-163.
[3] Barton L, Newsome SD, Che FH, Wang H, Guilderson TP, Bettinger RL (2009) Agricultural origins and the isotopic identity of domestication in northern China. Proceedings of the National Academy of Sciences, USA, 106, 5523-5528.
[4] Binford L (1971) Post Pleistocene adaptations. In: Prehistoric Agriculture (ed. Struever S), pp. 313-341. Natural History Press, Garden City.
[5] Bowles S (2011) Cultivation of cereals by the first farmers was not more productive than foraging. Cultivation of cereals by the first farmers was not more productive than foraging, Proceedings of the National Academy of Sciences, 108, 4760-4765.
[6] Burke M, Hsiang SM, Miguel E (2015) Global non-linear effect of temperature on economic production. Nature, 527, 235-239.
[7] Chen JK, Li Q (2014) Ecological Civilization: An Inevitable Choice for the Development of Human History. Chongqing Publishing Group, Chongqing. (in Chinese)
[7] [陈家宽, 李琴 (2014) 生态文明: 人类历史发展的必然选择. 重庆出版社, 重庆.]
[8] Chen W, Wang WM, Dai XR (2009) Holocene vegetation history with implications of human impact in the Lake Chaohu area, Anhui Province, East China. Vegetation History and Archaeobotany, 18, 137-146.
[9] Clement CR (1999) 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Economic Botany, 53, 188-202.
[10] Cohen DJ (2011) The beginnings of agriculture in China: A multi-regional view. Current Anthropology, 52(S4), S273-S293.
[11] Cohen M (1977) The Food Crisis in Prehistory: Overpopulation and the Origins of Agriculture. Yale University Press, New Haven.
[12] Cui XY, Wang WJ, Yang XQ, Li S, Qin SY, Rong J (2016) Potential distribution of wild Camellia oleifera based on ecological niche modeling. Biodiversity Science, 24, 1117-1128. (in Chinese with English abstract)
[12] [崔相艳, 王文娟, 杨小强, 李述, 秦声远, 戎俊 (2016) 基于生态位模型预测野生油茶的潜在分布. 生物多样性, 24, 1117-1128.]
[13] Da HB (2009) The Research on the Relations Between Culture and Ecological Environment of Neolithic Age in the Middle Reaches of Yangtze River. PhD dissertation, Central China Normal University, Wuhan. (in Chinese with English abstract)
[13] [笪浩波 (2009) 长江中游新石器时代文化与生态环境关系研究. 博士学位论文, 华中师范大学, 武汉.]
[14] Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature, 418, 700-707.
[15] Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell, 127, 1309-1329.
[16] Dong YC, Liu X (2008) Crops and Their Wild Relatives in China. China Agriculture Press, Beijing. (in Chinese)
[16] [董玉琛, 刘旭 (2008) 中国作物及其野生近缘种. 中国农业出版社, 北京.]
[17] Flannery KV (1965) The ecology of early food production in Mesopotamia. Science, 147, 1247-1256.
[18] Fuller DQ (2006) Agricultural origins and frontiers in South Asia: A working synthesis. Journal of World Prehistory, 20, 1-86.
[19] Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the Old World. Annals of Botany, 100, 903-924.
[20] Fuller DQ, Qin L (2010) Decline oaks, increasing artistry, and cultivating rice: The environmental and social context of the emergence of farming in the Lower Yangtze Region. Environmental Archaeology, 15, 139-159.
[21] Gu YS, Wang HL, Huang XY, Peng HX, Huang JH (2012) Phytolith records of the climate change since the past 15000 years in the middle reach of the Yangtze River in China. Frontiers in Earth Science, 6, 10-17.
[22] Harlan JR (1971) Agricultural origins: Centers and noncenters. Science, 174, 468-474.
[23] Huang HW, Liu YF (2014) Natural hybridization, introgression breeding, and cultivar improvement in the genus Actinidia. Tree Genetics and Genome, 10, 1113-1122.
[24] Huang XH, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu KY, Lu HY, Li WJ (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature, 490, 497-501.
[25] Jiang QH, Piperno DR (1999) Environmental and archaeological implications of a late Quaternary palynological sequence, Poyang Lake, southern China. Quaternary Research, 52, 250-258.
[26] Jones MK, Hunt H, Lightfoot E, Lister D, Liu XY, Motuzaite-Matuzeviciute G (2011) Food globalization in prehistory. World Archaeology, 43, 665-675.
[27] Jones MK, Liu XY (2009) Origins of agriculture in East Asia. Science, 324, 730-731.
[28] Kislev ME, Hartmann A, Bar-Yosef O (2006) Early domesticated fig in the Jordan Valley. Science, 312, 1372-1374.
[29] Konishi T, Yasui Y, Ohnishi O (2005) Original birthplace of cultivated common buckwheat inferred from genetic relationships among cultivated populations and natural populations of wild common buckwheat revealed by AFLP analysis. Genes and Genetic Systems, 80, 113-119.
[30] Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends in Genetics, 23, 578-587.
[31] Li MM, Cai YL, Qian ZQ, Zhao GF (2009) Genetic diversity and differentiation in Chinese sour cherry Prunus pseudocerasus Lindl., and its implications for conservation. Genetic Resources and Crop Evolution, 56, 455-464.
[32] Li YY, Wu J, Hou SF, Shi CX, Mo DW, Liu B, Zhou LP (2010) Palaeoecological records of environmental change and cultural development from the Liangzhu and Qujialing archaeological sites in the middle and lower reaches of the Yangtze River. Quaternary International, 227, 29-37.
[33] Liu L, Bestel S, Shi JM, Song YH, Chen XC (2013) Paleolithic human exploitation of plant foods during the Last Glacial Maximum in North China. Proceedings of the National Academy of Sciences,USA, 110, 5380-5385.
[34] Liu X (2012) Stage division of Chinese crop cultivation history and formation of traditional agriculture. The Agriculture History of China, (2), 3-16. (in Chinese with English abstract)
[34] [刘旭 (2012) 中国作物栽培历史的阶段划分和传统农业形成与发展. 中国农史, (2), 3-16.]
[35] Nasu H, Momohara A, Yasuda Y, He JJ (2007) The occurrence and identification of Setaria italic (L.) P. Beauv, (foxtail millet) grains from the Chengtoushan site (ca. 5800 cal BP) in central China, with reference to the domestication centre in Asia. Vegetation History and Archaeobotany, 16, 481-494.
[36] Pan Y (2011) The Resource Production in Yangtze Delta and Qiantang River Basin during 10000-6000 BP: Palaeoethnobotany and Human Ecology Research. PhD dissertation, Fudan University, Shanghai. (in Chinese with English abstract)
[36] [潘艳 (2011) 长江三角洲与钱塘江流域距今10000-6000年的资源生产: 植物考古与人类生态学研究. 博士学位论文, 复旦大学, 上海.]
[37] Pu MH (1981) A brief review of the origin of cultivated plants in China. Scientica Agricultura Sinica, 4, 86-96. (in Chinese with English abstract)
[37] [卜慕华 (1981) 我国栽培作物来源的探讨. 中国农业科学, 4, 86-96.]
[38] Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature, 457, 843-848.
[39] Qin JG, Taylor D, Atahan P, Zhang XR, Wu GX, Dodson J, Zheng HB, Itzstein-Davey F (2011) Neolithic agriculture, freshwater resources and rapid environmental changes on the lower Yangtze, China. Quaternary Research, 75, 55-65.
[40] Richerson P, Boyd R, Bettinger R (2001) Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. American Antiquity, 66, 387-411.
[41] Rindos D (1984) The Origins of Agriculture: An Evolutionary Perspective. Academic Press, San Diego.
[42] Roberts N, Eastwood WJ, Kuzucuoglu C, Fiorentino G, Caracuta V (2011) Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition. Holocene, 21, 147-162.
[43] Smith BD (2016) Neo-Darwinism, niche construction theory, and the initial domestication of plants and animals. Evolutionary Ecology, 30, 307-324.
[44] Society of Crop Genetic Resources, Chinese Association of Agricultural Science Societies(1994) Crop Genetic Resources in China. China Agriculture Press, Beijing. (in Chinese)
[44] [中国农学会遗传资源学会(1994) 中国作物遗传资源. 中国农业出版社, 北京.]
[45] Vavilov NI (translated by Dong YC) (1982) Origin and Geography of Cultivated Plants. China Agriculture Press, Beijing. (in Chinese)
[45] [瓦维洛夫 (董玉琛译) (1982) 主要栽培植物的世界起源中心. 中国农业出版社, 北京.]
[46] Vigne JD (2015) Early domestication and farming: What should we know or do for a better understanding? Anthropozoologica, 50, 123-150.
[47] Wang YS, Shahid MQ, Lin SQ, Chen C, Hu C (2017) Footprints of domestication revealed by RAD-tag resequencing in loquat: SNP data reveals a non-significant domestication bottleneck and a single domestication event. BMC Genomics, 18, 354.
[48] Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science, 312, 1608-1610.
[49] Willcox G (2005) The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: Multiple events, multiple centres. Vegetation History and Archaeobotany, 14, 534-541.
[50] Willcox G (2013) The roots of cultivation in southwestern Asia. Science, 341, 39-40.
[51] Willcox G, Fornite S, Herveux L (2008) Early Holocene cultivation before domestication in northern Syria. Vegetation History and Archaeobotany, 17, 313-325.
[52] WWF(2011) Atlas of Biodiversity and Conservation in the Yangtze River Basin. Science Press, Beijing
[52] [世界自然基金会 (2011) 长江流域生物多样性格局与保护图集. 科学出版社, 北京.]
[53] Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim CH, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang JJ, Mao SY, Jiao JY, Zhang D, Zhao Y, Zhao YJ, Zhang LP, Liu YL, Liu BY, Yu Y, Shao SF, Ni DJ, Eichler EE, Gao LZ (2017) The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant, 10, 866-877.
[54] Yang M, Liu F, Han YN, Xu LM, Juntawong N, Liu YL (2013) Genetic diversity and structure in populations of Nelumbo from America, Thailand and China: Implications for conservation and breeding. Aquatic Botany, 107, 1-7.
[55] Yi SH, Saito Y, Yang DY (2006) Palynological evidence for Holocene environmental change in the Changjiang (Yangtze River) Delta, China. Palynological evidence for Holocene environmental change in the Changjiang (Yangtze River) Delta, China, Palaeogeography, Palaeoclimatology, 241, 103-117.
[56] You XL (2009) Neolithic culture in the Yangtze River Basin. In: Chinese Agricultural History: Primitive Society (eds Du YL, Sun ZC), pp. 113-122. China Agriculture Press, Beijing. (in Chinese)
[56] [游修龄 (2009) 长江流域新石器时代文化. 见: 中国农业通史——原始社会卷 (杜言林, 孙政才主编), pp. 113-122. 中国农业出版社, 北京.]
[57] Zedar MA, Emshwiller E, Smith BD, Bradley DG (2006) Documenting domestication: The intersection of genetics and archaeology. Trends in Genetics, 22, 139-155.
[58] Zhang LL, Lu SY, Sun DF, Peng JH (2015) Genetic variation and geographical differentiation revealed using ISSR markers in tung tree, Vernicia fordii. Journal of Genetics, 94, 5-9.
[59] Zhang PZ, Cheng H, Edwards RL, Chen FH, Wang YJ, Yang XL, Liu J, Tan M, Wang XF, Liu JH, An CL, Dai ZB, Zhou J, Zhang DZ, Jia JH, Jin LY, Johnson KR (2008) A test of climate, sun and culture relationships from a 1810-year Chinese cave record. Science, 322, 940-942.
[60] Zhang WQ, Jia SQ, Li JX, Zheng J (1999) Palynological assemblages and their environmental significance since Quaternary in Wuhan area. Acta Geoscientica Sinica, 20(Suppl.), 197-202. (in Chinese)
[60] [张文卿, 贾淑琴, 李继新, 郑军 (1999) 武汉地区第四纪以来的孢粉组合及其环境意义. 地球学报, 20(增刊), 197-202.]
[61] Zhao ZJ (2011) New archaeobotanic data for the study of the origins of agriculture in China. Current Anthropology, 52(S4), S295-S306.
[62] Zheng DS, Liu X, Li Y (2012) Cultivated plants originated in China. Journal of Plant Genetic Resource, 12, 1-10. (in Chinese with English abstract)
[62] [郑殿升, 刘旭, 黎裕 (2012) 起源于中国的栽培植物. 植物遗传资源学报, 12, 1-10.]
[63] Zhu SY, Liu TM, Dai QZ, Wu DQ, Zheng X, Tang SW (2017) Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers. Biotechnology and Biotechnological Equipment, 31, 36-44.
[64] Zohary D, Hopf M (1973) Domestication of pulses in the Old World. Science, 182, 887-894.
[65] Zuo X, Lu H, Jiang L, Zhang J, Yang X, Huan X, He K, Wang C, Wu N (2017) Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proceedings of the National Academy of Sciences, USA, 114, 6486-6491.
文章导航

/

[an error occurred while processing this directive]