[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究报告

西双版纳热带季节雨林木本植物的beta多样性: 空间、环境与林分结构的作用

  • 施国杉 ,
  • 刘峰 ,
  • 曹光宏 ,
  • 陈典 ,
  • 夏尚文 ,
  • 邓云 ,
  • 王彬 ,
  • 杨效东 ,
  • 林露湘
展开
  • 1.中国科学院西双版纳热带植物园热带森林生态学重点实验室, 昆明 650223
    2.云南省林业和草原科学院, 昆明 650204
    3.纳板河流域国家级自然保护区管理局, 云南景洪 666100
    4.云南西双版纳森林生态系统国家野外科学观测研究站, 云南勐腊 666303
    5.云南大学生态与环境学院, 昆明 650504

收稿日期: 2024-07-01

  录用日期: 2024-10-15

  网络出版日期: 2024-12-20

基金资助

国家自然科学基金云南省联合基金(U1902203);中国科学院战略性先导科技专项(B类)(XDB31030000);国家自然科学基金委员会与联合国环境规划署合作研究项目(42061144005)

Beta diversity of woody plants in a tropical seasonal rainforest at Xishuangbanna: Roles of space, environment, and forest stand structure

  • Guoshan Shi ,
  • Feng Liu ,
  • Guanghong Cao ,
  • Dian Chen ,
  • Shangwen Xia ,
  • Yun Deng ,
  • Bin Wang ,
  • Xiaodong Yang ,
  • Luxiang Lin
Expand
  • 1. CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
    2. Yunnan Academy of Forestry and Grassland, Kunming 650204, China
    3. Administration Bureau of Naban River Watershed National Nature Reserve, Jinghong, Yunnan 666100, China
    4. National Forest Ecosystem Research Station at Xishuangbanna, Mengla, Yunnan 666303, China
    5. School of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China

Received date: 2024-07-01

  Accepted date: 2024-10-15

  Online published: 2024-12-20

Supported by

National Science Foundation of China-Yunnan Province(U1902203);Strategic Priority Research Program of Chinese Academy of Sciences(XDB31030000);NSFC China-UNEP Grant(42061144005)

摘要

Beta多样性能够度量物种组成的时空变化格局, 其驱动因子(例如空间与环境)一直是生态学研究的热点之一。然而, 林分结构作为森林群落重要的特征参数, 其对木本植物beta多样性的驱动作用还知之甚少。本研究以云南纳板河热带季节雨林20 ha动态样地的木本植物为研究对象, 在不同取样尺度将beta多样性分解为物种周转组分和物种丰富度差异组分, 通过基于距离矩阵的多元回归分析和方差分解, 解析空间、环境和林分结构在beta多样性及其两个组分格局形成中的相对作用。结果表明: (1) Beta多样性、物种周转组分和物种丰富度差异组分随取样尺度的增大而减小, 物种周转组分始终在beta多样性构成中占主导部分。(2)环境距离对beta多样性和物种周转组分具有相对较高的解释率, 随着取样尺度增大, 单纯的环境距离对beta多样性的解释率从8.8%增长到23.9%, 对物种周转组分的解释率从5.1%增长到26.5%; 而环境距离对物种丰富度差异组分几乎没有作用。(3)不同取样尺度林分结构距离对beta多样性均具有相对较高的解释率(11.3%‒25.1%), 并且对物种周转组分和物种丰富度差异组分始终保持一定的解释率。同时, 无论是否包含林分结构距离作为解释变量, 单纯的空间距离对beta多样性及其两个组分的解释率都很低。本研究支持环境过滤对beta多样性和物种周转组分的相对重要性随着取样尺度的增大而增大的观点, 同时发现扩散限制在局域尺度beta多样性格局形成中的作用却十分有限。本研究进一步揭示了能够指示光的可利用性和异质性的林分结构, 与地形、土壤等其他环境因子一样, 也是beta多样性格局形成的重要驱动力, 建议未来深入研究林分结构在木本植物多样性格局形成中的作用机制。

本文引用格式

施国杉 , 刘峰 , 曹光宏 , 陈典 , 夏尚文 , 邓云 , 王彬 , 杨效东 , 林露湘 . 西双版纳热带季节雨林木本植物的beta多样性: 空间、环境与林分结构的作用[J]. 生物多样性, 2024 , 32(12) : 24285 . DOI: 10.17520/biods.2024285

Abstract

Aims: Beta diversity measures the pattern of spatial and temporal changes in species composition. The factors driving beta diversity, such as spatial distance and environment conditions, are key topics in ecological research. However, as an important characteristic parameter of forest community, the driving effect of forest stand structure in shaping woody plants beta diversity remains largely unexplored. This study aims to address the contribution of forest stand structure, alongside space and environment, to beta diversity and its components.

Methods: Focusing on woody plants in the 20 ha tropical seasonal rainforest dynamics plot in Nabanhe, Yunnan, this study decomposed beta diversity into two components: Species turnover and species richness difference, across different sampling scales. By using multivariate regression based on distance matrices and variance partitioning, we revealed the relative contributions of spatial, environmental, and forest stand structure factors in shaping beta diversity and its two components.

Results: The results showed that: (1) beta diversity and its species turnover component and species richness difference component decreased with the increase increasing sampling scale, with species turnover consistently dominating beta diversity. (2) Environmental distance had a relatively high explanatory power for beta diversity and its species turnover component, with its influence increasing from 8.8% to 23.9% for beta diversity and from 5.1% to 26.5% for species turnover as the sampling scale expanded. However, environmental distance had little effect on species richness difference component. (3) Forest stand structure demonstrated relatively high explanatory power for beta diversity (11.3%‒25.1%) and maintained a certain degree of explanatory power for both species turnover component and species richness difference component across all scales. At the same time, pure spatial distance, whether or not stand structure was included, had a low explanatory power for beta diversity and its components.

Conclusion: This study supports the viewpoint that the relative importance of environmental filtering in beta diversity, particularly the species turnover component, increases with sampling scale. In contrast, dispersal limitation plays a limited role at local scales. This study further reveals that forest stand structure indicating the light availability and heterogeneity is also an important driving force for beta diversity, similar to environmental factors such as topography and soil. Future research should focus on elucidating the mechanisms by which stand structure influence woody plant beta diversity in the future.

[an error occurred while processing this directive]

参考文献

[1] Aber JD, Pastor J, Melillo JM (1982) Changes in forest canopy structure along a site quality gradient in southern Wisconsin. American Midland Naturalist, 108, 256-265.
[2] Administration Bureau of Naban River Watershed National Nature Reserve, Bureau of Environmental Protection of Yunnan (2006) Naban River Watershed National Nature Reserve of Xishuangbanna. Yunnan Science and Technology Press, Kunming. (in Chinese)
  [西双版纳纳板河流域国家级自然保护区管理所, 云南省环境保护局 (2006) 西双版纳纳板河流域国家级自然保护区. 云南科技出版社, 昆明.]
[3] Ali A, Lin SL, He JK, Kong FM, Yu JH, Jiang HS (2019) Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests. Forest Ecology and Management, 432, 823-831.
[4] Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS (2016) Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 13, 4627-4635.
[5] Almeida DRA, Broadbent EN, Zambrano AMA, Wilkinson BE, Ferreira ME, Chazdon R, Meli P, Gorgens EB, Silva CA, Stark SC, Valbuena R, Papa DA, Brancalion PHS (2019) Monitoring the structure of forest restoration plantations with a drone-lidar system. International Journal of Applied Earth Observation and Geoinformation, 79, 192-198.
[6] Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecology Letters, 14, 19-28.
[7] Aponte C, Kasel S, Nitschke CR, Tanase MA, Vickers H, Parker L, Fedrigo M, Kohout M, Ruiz-Benito P, Zavala MA, Bennett LT (2020) Structural diversity underpins carbon storage in Australian temperate forests. Global Ecology and Biogeography, 29, 789-802.
[8] Ashton P (2015) On the Forests of Tropical Asia: Lest the Memory Fade. Royal Botanic Gardens, Kew, London.
[9] Atkins JW, Fahey RT, Hardiman BS, Gough CM (2018) Forest canopy structural complexity and light absorption relationships at the subcontinental scale. Journal of Geophysical Research: Biogeosciences, 123, 1387-1405.
[10] Bin Y, Wang ZG, Wang ZM, Ye WH, Cao HL, Lian JY (2010) The effects of dispersal limitation and topographic heterogeneity on beta diversity and phylobetadiversity in a subtropical forest. Plant Ecology, 209, 237-256.
[11] Bohn FJ, Huth A (2017) The importance of forest structure to biodiversity-productivity relationships. Royal Society Open Science, 4, 160521.
[12] Brenning A, Bangs D, Becker M, Schratz P, Polakowski F (2018) SAGA Geoprocessing and Terrain Analysis. https://github.com/r-spatial/RSAGA. (accessed on 2021-11-28)
[13] Carvalho JC, Cardoso P, Gomes P (2012) Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography, 21, 760-771.
[14] Catano CP, Dickson TL, Myers JA (2017) Dispersal and neutral sampling mediate contingent effects of disturbance on plant beta-diversity: A meta-analysis. Ecology Letters, 20, 347-356.
[15] Chang LW, Zeleny D, Li CF, Chiu ST, Hsieh CF (2013) Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology, 94, 2145-2151.
[16] Chen SB, Ouyang ZY, Xu WH, Xiao Y (2010) A review of beta diversity studies. Biodiversity Science, 18, 323-335. (in Chinese with English abstract)
  [陈圣宾, 欧阳志云, 徐卫华, 肖燚 (2010) Beta多样性研究进展. 生物多样性, 18, 323-335.]
[17] Chen SB, Ouyang ZY, Zheng H, Xiao Y, Xu WH (2011) Latitudinal gradient in beta diversity of forest communities in America. Acta Ecologica Sinica, 31, 1334-1340. (in Chinese with English abstract)
  [陈圣宾, 欧阳志云, 郑华, 肖燚, 徐卫华 (2011) 美洲森林群落beta多样性的纬度梯度性. 生态学报, 31, 1334-1340.]
[18] Cheng XQ, Han HR, Kang FF, Song YL, Liu K (2014) Point pattern analysis of different life stages of Quercus liaotungensis in Lingkong Mountain, Shanxi Province, China. Journal of Plant Interactions, 9, 233-240.
[19] Chu CJ, Lutz JA, Král K, Vr?ka T, Yin X, Myers JA, Abiem I, Alonso A, Bourg N, Burslem DFRP, Cao M, Chapman H, Condit R, Fang SQ, Fischer GA, Gao LM, Hao ZQ, Hau BCH, He Q, Hector A, Hubbell SP, Jiang MX, Jin GZ, Kenfack D, Lai JS, Li BH, Li XK, Li YD, Lian JY, Lin LX, Liu YK, Liu Y, Luo YH, Ma KP, McShea W, Memiaghe H, Mi XC, Ni M, O’Brien MJ, de Oliveira AA, Orwig DA, Parker GG, Qiao XJ, Ren HB, Reynolds G, Sang WG, Shen GC, Su ZY, Sui XH, Sun IF, Tian SY, Wang B, Wang XH, Wang XG, Wang YS, Weiblen GD, Wen SJ, Xi NX, Xiang WS, Xu H, Xu K, Ye WH, Zhang BW, Zhang JX, Zhang XT, Zhang YM, Zhu K, Zimmerman J, Storch D, Baltzer JL, Anderson-Teixeira KJ, Mittelbach GG, He FL (2019) Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 22, 245-255.
[20] Condit R (1998) Tropical Forest Census Olots Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer-Verlag, Berlin.
[21] Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000) Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418.
[22] Condit R, Pitman N, Leigh E, Chave J, Terborgh J, Foster RB, Nú?ez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical forest trees. Science, 295, 666-669.
[23] De Cáceres M, Legendre P, Valencia R, Cao M, Chang LW, Chuyong G, Condit R, Hao ZQ, Hsieh CF, Hubbell S, Kenfack D, Ma KP, Mi XC, Supardi Noor MN, Kassim AR, Ren HB, Su SH, Sun IF, Thomas D, Ye WH, He FL (2012) The variation of tree beta diversity across a global network of forest plots. Global Ecology and Biogeography, 21, 1191-1202.
[24] Dray S, Blanchet FG, Borcard D, Clappe S, Guénard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner H (2018) adespatial: Multivariate multiscale spatial analysis. https://cran.r-project.org/web/packages/adespatial/. (accessed on 2024-08-27)
[25] Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82, 257-275.
[26] Duivenvoorden JF, Svenning JC, Wright SJ (2002) Beta diversity in tropical forests. Science, 295, 636-637.
[27] Ehbrecht M, Schall P, Ammer C, Seidel D (2017) Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agricultural and Forest Meteorology, 242, 1-9.
[28] Fahey RT, Atkins JW, Gough CM, Hardiman BS, Nave LE, Tallant JM, Nadehoffer KJ, Vogel C, Scheuermann CM, Stuart-Ha?ntjens E, Haber LT, Fotis AT, Ricart R, Curtis PS (2019) Defining a spectrum of integrative trait-based vegetation canopy structural types. Ecology Letters, 22, 2049-2059.
[29] Fang JY, Yu GR, Liu LL, Hu SJ, Chapin F (2018) Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences, USA, 115, 4015-4020.
[30] Fotis AT, Morin TH, Fahey RT, Hardiman BS, Bohrer G, Curtis PS (2018) Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agricultural and Forest Meteorology, 250, 181-191.
[31] Goslee S, Urban D (2020) Dissimilarity-based Functions for Ecological Analysis. https://CRAN.R-project.org/package= ecodist. (accessed on 2024-04-14)
[32] Gray AN, Spies TA, Pabst RJ (2012) Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest. Forest Ecology and Management, 281, 111-120.
[33] Hall P (2006) The CTFS Large Plot Forest Dynamics Analyses. https://github.com/forestgeo/ctfs/. (accessed on 2021-11-20)
[34] Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959.
[35] Harrison S, Ross SJ, Lawton JH (1992) Beta diversity on geographic gradients in Britain. The Journal of Animal Ecology, 61, 151-158.
[36] Heino J, Nokela T, Soininen J, Tolkkinen M, Virtanen L, Virtanen R (2015) Elements of metacommunity structure and community-environment relationships in stream organisms. Freshwater Biology, 60, 973-988.
[37] HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248.
[38] Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, de Lao SL (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554-557.
[39] Jackson DA (1993) Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology, 74, 2204-2214.
[40] Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: Influence of environmental and spatial data quality. Oecologia, 155, 593-604.
[41] Kumar P, Chen HYH, Thomas SC, Shahi C (2018) Linking resource availability and heterogeneity to understorey species diversity through succession in boreal forest of Canada. Journal of Ecology, 106, 1266-1276.
[42] Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography, 23, 1324-1334.
[43] Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecological Monographs, 75, 435-450.
[44] Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009) Partitioning beta diversity in a subtropical broad- leaved forest of China. Ecology, 90, 663-674.
[45] Lennon JJ, Koleff P, GreenwooD JJD, Gaston KJ (2001) The geographical structure of British bird distributions: Diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979.
[46] Levine JM, Murrell DJ (2003) The community-level consequences of seed dispersal patterns. Annual Review of Ecology, Evolution, and Systematics, 34, 549-574.
[47] Liang JC, Ding ZF, Li CL, Hu YM, Zhou ZX, Lie GW, Niu XN, Huang WB, Hu HJ, Si XF (2024) Patterns and drivers of avian taxonomic and phylogenetic beta diversity in China vary across geographical backgrounds and dispersal abilities. Zoological Research, 45, 125-135.
[48] Lichstein JW (2007) Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecology, 188, 117-131.
[49] Liu F, Yang SH (2015) A Comprehensive Scientific Investigation of the Naban River Watershed National Nature Reserve. Yunnan Science and Technology Press, Kunming. (in Chinese)
  [刘峰, 杨树华 (2015) 纳板河流域国家级自然保护区综合考察报告. 云南科技出版社, 昆明.]
[50] Matsuo T, Martínez-Ramos M, Bongers F, van der Sande MT, Poorter L (2021) Forest structure drives changes in light heterogeneity during tropical secondary forest succession. Journal of Ecology, 109, 2871-2884.
[51] McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: Its definition and measurement. Forest Ecology and Management, 218, 1-24.
[52] Mouquet N, Loreau M (2003) Community patterns in source- sink metacommunities. The American Naturalist, 162, 544-557.
[53] Myers JA, Chase JM, Jiménez I, J?rgensen PM, Araujo- Murakami A, Paniagua-Zambrana N, Seidel R (2013) Beta- diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16, 151-157.
[54] Nielsen SE, Munro RHM, Bainbridge EL, Stenhouse GB, Boyce MS (2004) Grizzly bears and forestry: II. Distribution of grizzly bear foods in clearcuts of west-central Alberta, Canada. Forest Ecology and Management, 199, 67-82.
[55] Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) Community Ecology Package. https://github.com/vegandevs/vegan. (accessed on 2024-04-25)
[56] Onoda Y, Salu?ga JB, Akutsu K, Aiba SI, Yahara T, Anten NPR (2014) Trade-off between light interception efficiency and light use efficiency: Implications for species coexistence in one-sided light competition. Journal of Ecology, 102, 167-175.
[57] Page NV, Shanker K (2018) Environment and dispersal influence changes in species composition at different scales in woody plants of the Western Ghats, India. Journal of Vegetation Science, 29, 74-83.
[58] Pebesma E, Graeler B (2020) Spatial and Spatio-temporal Geostatistical Modelling, Prediction and Simulation. https://github.com/r-spatial/gstat. (accessed on 2021-11-14)
[59] Podani J, Schmera D (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data. Oikos, 120, 1625-1638.
[60] Qian H (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 18, 327-332.
[61] Qu MJ, Ababaike NEYL, Zou XG, Zhao H, Zhu WL, Wang JM, Li JW (2022) Influence of geographic distance and environmental factors on beta diversity of plants in the Alxa gobi region in northern China. Biodiversity Science, 30, 22029. (in Chinese with English abstract)
  [曲梦君, 努尔依拉·阿巴拜克, 邹旭阁, 赵航, 朱威霖, 王健铭, 李景文(2022) 地理距离和环境因子对阿拉善戈壁植物群落β多样性的影响. 生物多样性, 30, 22029.]
[62] R Core Team (2021) R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (accessed on 2021-11-09)
[63] Schnitzer SA, Carson WP (2001) Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology, 82, 913-919.
[64] Shi GS, Liu F, Chen D, Deng Y, Lin LX (2021) Species composition and community classification of the 20-ha tropical seasonal rainforest dynamics monitoring plot in the Naban River, Yunnan. Biodiversity Science, 29, 10-20. (in Chinese with English abstract)
  [施国杉, 刘峰, 陈典, 邓云, 林露湘 (2021) 云南纳板河热带季节雨林20 ha动态监测样地的树种组成与群落分类. 生物多样性, 29, 10-20.]
[65] Si XF, Zhao YH, Chen CW, Ren P, Zeng D, Wu LB, Ding P (2017) Beta-diversity partitioning: Methods, applications and perspectives. Biodiversity Science, 25, 464-480. (in Chinese with English abstract)
  [斯幸峰, 赵郁豪, 陈传武, 任鹏, 曾頔, 吴玲兵, 丁平 (2017) Beta多样性分解: 方法、应用与展望. 生物多样性, 25, 464-480.]
[66] Soininen J, Heino J, Wang JJ (2018) A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography, 27, 96-109.
[67] S?rensen R, Zinko U, Seibert J (2006) On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10, 101-112.
[68] Staniczenko PPA, Kopp JC, Allesina S (2013) The ghost of nestedness in ecological networks. Nature Communications, 4, 1391.
[69] Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33, 309-319.
[70] Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244.
[71] Valencia R, Foster RB, Villa G, Condit R, Svenning JC, Hernández C, Romoleroux K, Losos E, Mag?rd E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. Journal of Ecology, 92, 214-229.
[72] Wang XG, Wiegand T, Anderson-Teixeira KJ, Bourg NA, Hao ZQ, Howe R, Jin GZ, Orwig DA, Spasojevic MJ, Wang SZ, Wolf A, Myers JA (2018) Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Global Ecology and Biogeography, 27, 581-592.
[73] Wang YP, Bao YX, Yu MJ, Xu GF, Ding P (2010) Biodiversity research: Nestedness for different reasons: The distributions of birds, lizards and small mammals on islands of an inundated lake. Diversity and Distributions, 16, 862-873.
[74] Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338.
[75] Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: Towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470.
[76] Williams PH (1996) Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proceedings of the Royal Society B: Biological Sciences, 263, 579-588.
[77] Yang X, Yao ZL, Wang B, Wen HD, Deng Y, Cao M, Zhang ZM, Tan ZH, Lin LX (2023) Driving effects of forest stand structure of a subtropical evergreen broad-leaved forest on species composition variation: From local to regional scales. Biodiversity Science, 31, 22139. (in Chinese with English abstract)
  [杨欣, 姚志良, 王彬, 温韩东, 邓云, 曹敏, 张志明, 谭正洪, 林露湘 (2023) 亚热带常绿阔叶林林分结构对物种组成变异的驱动作用: 从局域到区域尺度. 生物多样性, 31, 22139.]
[78] Yao ZL, Wen HD, Deng Y, Cao M, Lin LX (2020) Driving forces underlying the beta diversity of tree species in subtropical mid-mountain moist evergreen broad-leaved forests in Ailao Mountains. Biodiversity Science, 28, 445-454. (in Chinese with English abstract)
  [姚志良, 温韩东, 邓云, 曹敏, 林露湘 (2020) 哀牢山亚热带中山湿性常绿阔叶林树种beta多样性格局形成的驱动力. 生物多样性, 28, 445-454.]
[79] Yao ZL, Yang X, Wang B, Shao XN, Wen HD, Deng Y, Zhang ZM, Cao M, Lin LX (2023) Multidimensional beta-diversity across local and regional scales in a Chinese subtropical forest: The role of forest structure. Ecology and Evolution, 13, e10607.
[80] Yi XX, Wang NN, Ren HB, Yu JP, Hu TY, Su YJ, Mi XC, Guo QH, Ma KP (2022) From canopy complementarity to asymmetric competition: The negative relationship between structural diversity and productivity during succession. Journal of Ecology, 110, 457-465.
[81] Zhang J, Hu JB, Lian JY, Fan ZJ, Ouyang XJ, Ye WH (2016a) Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60-69.
[82] Zhang J, Nielsen SE, Mao LF, Chen SB, Svenning JC (2016b) Regional and historical factors supplement current climate in shaping global forest canopy height. Journal of Ecology, 104, 469-478.
[83] Zhang J, Zhang ZC, Lutz JA, Chu CJ, Hu JB, Shen GC, Li BH, Yang QS, Lian JY, Zhang MH, Wang XH, Ye WH, He FL (2022) Drone-acquired data reveal the importance of forest canopy structure in predicting tree diversity. Forest Ecology and Management, 505, 119945.
[84] Zhao XQ, Guo QH, Su YJ, Xue BL (2016) Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 79-91.
[85] Zhou CY, Wang B, Deng Y, Wu JJ, Cao M, Lin LX (2020) Canopy structure is an important factor driving local-scale woody plant functional beta diversity. Biodiversity Science, 28, 1546-1557. (in Chinese with English abstract)
  [周昌艳, 王彬, 邓云, 乌俊杰, 曹敏, 林露湘 (2020) 林冠结构是局域尺度木本植物功能性状beta多样性形成的重要驱动力. 生物多样性, 28, 1546-1557.]
[86] Ziadi N, Tran TS (2007) Mehlich 3 extractable elements. In:Soil Sampling and Methods of Analysis, 2nd edn. (eds Carter MR, Gregorich EG), pp. 81-88. CRC Press, Boca Raton.
文章导航

/

[an error occurred while processing this directive]