生物多样性 ›› 2025, Vol. 33 ›› Issue (9): 25190.  DOI: 10.17520/biods2025190

• 研究报告: 微生物多样性 • 上一篇    下一篇

西溪湿地土壤病毒多样性及其碳代谢基因解析

洪欣艺1,蔡易朗1,方嘉乐1,姚可侃2,李佳乐3,王懿祥4,白尚斌1,王楠1,周秀梅1*   

  1. 1.浙江农林大学暨阳学院,浙江诸暨 311800;2. 西溪国家湿地公园生态文化研究中心,浙江西溪湿地生态系统定位观测研究站,杭州 310000; 3. 南京师范大学数学科学学院,南京210023;4. 浙江农林大学环境与资源学院、碳中和学院,杭州 311300
  • 收稿日期:2025-05-22 修回日期:2025-06-15 接受日期:2025-07-23 出版日期:2025-09-20 发布日期:2025-10-31
  • 通讯作者: 周秀梅
  • 基金资助:
    浙江农林大学暨阳学院科研发展基金项目/人才启动项目(RC2021B05); 浙江农林大学暨阳学院科研发展基金项目/人才启动项目(RQ2020B03)

Soil viral diversity and carbon metabolism genes profiling in Xixi Wetland

Xinyi Hong1, Yilang Cai1, Jiale Fang1, Kekan Yao2, Jiale Li3, Yixiang Wang4, Shangbin Bai1, Nan Wang1, Xiumei Zhou1*   

  1. 1 Jiyang College of Zhejiang A&F University, Zhuji, Zhejiang 311800, China 

    2 Hangzhou Xixi National Wetland Park Ecological and Cultural Research Center,Zhejiang Xixi Wetland Ecosystem Observation and Research Station,Zhejiang,Hangzhou 310030, China 

    3 School of Mathematical Sciences Nanjing Normal University, Nanjing 210023, China 

    4 College of Envirommental & Resoure Science、Carbon Neutralization College of Zhejiang A&F University, Hangzhou 311300, China

  • Received:2025-05-22 Revised:2025-06-15 Accepted:2025-07-23 Online:2025-09-20 Published:2025-10-31
  • Contact: Xiumei Zhou

摘要: 湿地土壤病毒在有机碳循环中发挥关键作用, 其携带的碳水化合物活性酶(CAZymes)基因可辅助碳代谢过程。为揭示城市湿地土壤病毒多样性特征及其碳代谢功能, 本研究以杭州西溪国家湿地公园为研究对象, 选取乔灌草地、灌草地、芦苇地、浅滩和池塘5种典型生境, 通过病毒宏基因组测序与生物信息学分析, 系统探究了不同湿地生境类型土壤中病毒的多样性特征及其碳代谢基因组成。研究结果显示, 5种生境的病毒丰富度、多样性存在显著差异(P < 0.05), 由高到低依次为灌草地 > 乔灌草地 > 芦苇地 > 浅滩 > 池塘; 结构方程模型分析表明, 该格局主要受土壤理化性质影响, 对病毒多样性效应值排序依次为pH > 土壤湿度 > 土壤有机碳(SOC) ≈ 全氮(TN) > 土壤温度, 对病毒宿主与病毒多样性的综合效应值贡献度依次为TN > SOC > 土壤温度, 病毒宿主对病毒多样性强显著(效应值 = 0.87); 研究共鉴定出158个独特的碳水化合物运输与代谢(G)基因, 包含13种碳水化合物活性酶基因。其中糖基转移酶占比最高(65.8%), 表明土壤病毒在湿地碳循环中可能发挥重要作用。病毒功能基因的表达与分布受SOC和TN含量的显著影响, 说明土壤养分状况与病毒生态功能有密切的联系。研究结果为深入理解碳循环的微生物调控机制提供了重要科学依据, 对湿地保护与管理具有重要实践意义。

关键词: 湿地, 病毒宏基因组测序, 土壤有机碳固持, 碳水化合物活性酶基因, 生态功能

Abstract

Aims: The purpose of this study is to systematically examine soil viral community composition and assess their carbon metabolic functional potential across urban wetland ecosystems.  

Methods: We took five habitat types of sample plots, including trees, shrubs and grasslands, shrub grasslands, reed marshes, shoals and ponds, distributed widely in Hangzhou Xixi National Wetland Park, Zhejiang Province (Xixi Wetland) as the research objects. This study investigated soil viral diversity patterns and carbon metabolic gene composition across these five habitat types using virus metagenomic sequencing coupled with bioinformatics analysis.

Results: There were significant differences in viral richness and diversity among the five habitat types (P < 0.05), with hierarchical rankings as follows: shrub grasslands > trees, shrubs and grasslands > reed marshes > shoals > ponds; The structural equation modeling analysis showed that this spatial pattern was predominantly mainly driven by soil physicochemical properties, with the order of effect size was pH > soil moisture > SOC ≈ TN > soil temperature. The contribution of comprehensive effect size of viral host and viral diversity was in the order of TN > SOC > soil temperature, and the direct effect of viral host on viral diversity was the strongest (effect size = 0.87); A total of 158 unique carbohydrate transport and metabolism (G) genes were identified, including 13 distinct carbohydrates active enzyme (CAZyme) families. Among these glycosyltransferases accounted for the highest proportion (65.8%), indicating that soil viruses may play an important role in wetland carbon cycling through glycosylation-mediated processes.

Conclusion: The diversity of soil viruses in Xixi Wetland exhibits significant spatial heterogeneity. This distribution pattern is closely linked to variations in soil physicochemical properties (especially the key factors such as SOC, TN and soil moisture). The CAZyme genes identified in five habitat types contribute to wetland carbon cycling processes through regulating the metabolic pathways of host microorganisms.

Key words: wetlands, virus metagenomic sequencing, soil organic carbon sequestration, CAZymes genes, ecological function