生物多样性 ›› 2011, Vol. 19 ›› Issue (3): 275-283.  DOI: 10.3724/SP.J.1003.2011.09275

• 综述 • 上一篇    下一篇

群落构建研究的新进展: 进化和生态 相结合的群落谱系结构研究

牛红玉1,2, 王峥峰1, 练琚愉1, 叶万辉1,*(), 沈浩1   

  1. 1 (中国科学院华南植物园, 广州 510650)
    2 (中国科学院研究生院, 北京 100049)
  • 收稿日期:2011-01-13 接受日期:2011-03-15 出版日期:2011-05-20 发布日期:2013-12-10
  • 通讯作者: 叶万辉
  • 作者简介:*E-mail:why@scib.ac.cn
  • 基金资助:
    国家自然科学基金委对外交流项目(31061160188)

New progress in community assembly: community phylogenetic structure combining evolution and ecology

Hongyu Niu1,2, Zhengfeng Wang1, Juyu Lian1, Wanhui Ye1,*(), Hao Shen1   

  1. 1 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650
    2 Graduate University of the Chinese Academy of Sciences, Beijing 100049
  • Received:2011-01-13 Accepted:2011-03-15 Online:2011-05-20 Published:2013-12-10
  • Contact: Wanhui Ye

摘要:

群落如何构建是群落生态学中的重要问题。群落谱系结构研究将物种间的亲缘进化关系运用到群落生态学研究中, 利用物种的系统发育状况推测历史因素对现有群落的影响, 为推断影响群落组成的生态学机制提供了有效方法。群落谱系结构的研究方法是首先建立可代表群落物种库的超级系统进化树, 然后计算群落内物种间的谱系距离, 最后通过统计方法检测其与随机模型下的谱系距离是否有显著差异来获得谱系结构(如谱系聚集、谱系发散), 从而揭示群落构建中的关键生态过程(如生境过滤、竞争作用)。群落谱系结构与空间尺度、分类群尺度、时间尺度等不同研究尺度有关。在小的空间尺度下, 随着分类群尺度降低、树木年龄级增大, 群落谱系结构从聚集逐渐转为发散;而随群落空间尺度的增大, 谱系趋向于聚集。谱系结构受到环境因素影响, 因此分析集合群落下的谱系可以揭示区域生态过程的影响。另外, 群落谱系结构研究还有助于探讨中性理论、密度制约假说等生态学理论, 并预测干扰作用下的群落演化趋势。在利用谱系结构深入探讨群落构建成因时, 需要基于生态特征和环境变量共同分析, 同时考虑小尺度局域过程(群落的微环境或群落内种间相互作用等)和大尺度区域过程(地史过程和物种形成等), 并可结合生态控制实验, 以确认群落构建的关键因素。在研究方法和手段上, 今后需要注重通过选择合适的基因片段建立系统树, 然后通过生态特征来加以校正, 以更准确地反映物种间的亲缘距离。另外, 获得谱系树后还需要寻找更加合理的统计模型和指数, 增加统计分析和解决问题的能力。

关键词: 群落生态学, 系统进化树, 尺度, 功能性状

Abstract

Community assembly has long been an important issue in community ecology. The study of community phylogenetic structure, which applies phylogeny to community ecology studies, has provided an effective way to disentangle the most important ecological processes that drive community assembly. Studying the phylogenetic structure of a community involves firstly the construction of a supertree representing the species pool of the community, then a calculation of phylogenetic distances between all species within the community, and finally an inference of phylogenetic structure (e.g., clustering, overdispersion) obtained by statistically testing whether the obtained phylogenetic distances are different from those expected under random model, hence revealing key ecological processes involved in community assembly (e.g., habitat filtering, competition exclusion). Community phylogenetic structure is different when studied at different taxonomic, spatial or temporal scales. At small spatial scales, community phylogenetic pattern tends to change from clustering to overdispersion with decreasing taxonomical scale or increasing tree age class, while the pattern tends to be tighter clustering at larger spatial scales. Phylogenetic information also indicates the influence of environmental factors and studying community phylogeny at the metacommunity level helps to understand regional ecological processes. In addition, phylogenetic structure can help to explore neutral theory, density-dependent hypothesis and other theories in ecology, and even to predict community dynamics and evolution under disturbance. The future application of phylogenetic structure to disclosing underlying causes of community assembly demands the joint analysis of ecological traits and environment factors and, the consideration of both local processes (e.g., microenviroment, biological interactions) and regional processes (e.g., geological history, speciation). In terms of methodological aspects, to construct a phylogenetic tree, appropriate gene segments should be used and the tree needs to be corrected using ecological traits in order to reflect more exact phylogenetic distances among species. Furthermore, more effective statistical models and indices are needed to increase statistical power.

Key words: community ecology, phylogenetic tree, scales, functional traits